SESSION 3-4

Time evolution

Faraday’s law
Ampere’s law

lon Vlasov eq.

lon moments

Quasi-neutrality

Generalized Ohm’s law

0B
— =-VXxE
) S
NOJZVXBa
Ofp E+vxB
5 ' " -V /fp,
n; = Z/fp(r,v) d>v,
p
V'ZLZ/Vf(I'V)d&U
i ; p\L,)
p
N, = Ne = N,
B J
Ve =V, — —
ne
E- v.xB_ Lv.p,_ Medve
en e dt

Move particles

Fields to particles Accumulate moments

(E(r), B(r))

Yi+2

i L

Yi+2

N
N VAN

Yi
Yi k. T Tiio r; Li+1 Ti42
7 1 1
N
n—1n—1 N;; = S(I‘ rj)w
Q) =3 3" Qs S(rp — 1y R
ENE 1 N
Vij = ZVPS (rp — 135) wy
iy
OB N
W:_VXE’ Ve = ViT L
/.L()j:VXB, E:—VeXB—iV‘Pe_%dve.
en e dt

population.hpp

void deposit()

{

static_assert(dimension == 1, "Population only implemented for 1D");
for (auto& n : m_density)

{
n =0.0; // Reset the field

for (auto& fx : m_flux.x)
fx = 0.9;

for (auto& fy : m_flux.y)
fy = 0.9;

for (auto& fz : m_flux.z)
fz = 0.9;

for (auto const& particle : m_particles)

{
double const iCell_float = particle.position[@] / m_grid->cell_size(Direction::X);
int const iCell_ = static_cast<int>(iCell_float);
double const reminder = iCell_float - iCell_;
auto const iCell = iCell_ + m_grid->dual_dom_start(Direction::X);
// TODO implement linear weighting deposit for the density and flux
}

Yi+2

Accumulate moments

NP
i [

N
Nij = Z S (rp —rij) wp
p
| X
Vij = — ZVPS (rp — rij) wyp
7lij »

moments.hpp

template<std::size_t dimension>
void total_density(std::vector<Population<dimension>> const& populations, Field<dimension>& N)

{
for (auto ix = @; ix < N.data().size(); ++ix)
{
N(ix) = 0;
}
for (auto const& pop : populations)
{
// TODO calculate the total density
}
}

template<std::size_t dimension>
void bulk_velocity(std::vector<Population<dimension>> const& populations, Field<dimension> const& |
VecField<dimension>& V)

{
for (auto ix = @; ix < N.data().size(); ++ix)
{
V.x(ix) = @;
V.y(ix) = @;
V.z(ix) = @;
}
for (auto& pop : populations)
{
for (auto ix = @; ix < N.data().size(); ++ix)
{
V.x(ix) += pop.flux().x(ix);
V.y(ix) += pop.flux().y(ix);
V.z(ix) += pop.flux().z(ix);
}
}
// TODO calculate bulk velocity by dividing by density N
}

Accumulate moments

Yi+2

NP
i [

ou _ ou
ot Ox

Yy g Y41 T Ui
AN N 2Ax
nt1/2 1 ntl | n
G = 5 (“?1 +“j)
up2,n-|—1 oy pl,n—|—1/2 o pl,n—|—1/2
J g _ g+l J—1
JAN 2Ax
nt1/2 1 n+1
j—|- / _ 5 (U§2 + + U?)
u,n—|—1 _yn pg,n—|—1/2 B pg,n—|—1/2
J g _ g+l j—1
JAN 2Ax

https://arxiv.org/pdf/gr-gc/9909026

https://arxiv.org/pdf/gr-qc/9909026

3 STEPS ITERATED CRANK NICHOLSON

t Prediction

B! =B" — AtV x E”

vV x B2 P,
Ept = —u x Byt VN +nV x B — v V2V x Bof?

(E,B)""/? =< (E,B) >"*!

n+1/2

r " At/2v"
E B(n+1/2) S (BB W (|rijkz zl+1/2‘)
ijk
m; dvgrl =e (v”]x +Brt/2 En+1/2>
N = D W (i =) = i W (e =)
Prediction

B! =B" — AtV x E"t1/2
VxByl v.P

n+1 n+1 n+1 e n+1 2 1
BT = -t BL + o — gy HIV X BT VIV x By
r]’j;l/z r" + At/2v"

(E,B)""/? =< (E,B) >"*!

dvit
m; P2 _ e (Vn « +Bn+1/2 +En—|—l/2>
dt
Nn+1 pr n-I-IW |r7,jk Zil-1|) pr n—|—1W ‘rljk Zil—lD
Correction

Bn+1 — B" — AtV x E’fH—l/Q

B+l V.P,
VX v +nV x B"T —pV2V x BTl

ETL—|—1 _ _
o Nn+1 Nn—l—l

_un+1 > Bn+1 4+

t+ At

HPC Master Class

Yee grid

i+1/2,5+1/2,k)

.-p-?,

SESSION 4-5

Parallelism

MPI and particle parallelization

THERE ARE MANY FORMS OF PARALLELISM

Network connection

Node 1 Node 2

- Vectorization
- CPU threads
- Inter-node messaging

HPC Master Class

Node N

Cores

GPUs

VECTORIZATION

Network connection

Node 1

- \ectorization
- CPU threads
- Inter-node messaging

Node 2

HPC Master Class

Node N

Cores

GPUs

pp

CPUs can actually do multiple operations at once in a vector fashion

Scalar Vectorized

17

Single Instruction Multiple Data : SIMD

€

VECTORIZATION

- your data structure needs to be « compatible » with
vector operations (structures of arrays)

- Compilers can automatically vectorize your code

-0O3 -march=native -mtune=native -fopt-info-vec

Manual (explicit) vectorization:

- Architecture dependent
- AVX512 : 8 double precision

- It’s very low level, difficult

Vectorization may speed up some parts of your code

for (int i=0; i<16; ++1i)
C[i] = A[i] + BI[il];

for (int i=0; i<16; i+=4) {

Clil]

Cli+1
Cli+2
Cli+3

for (int i=0; i<16; i+=4)

i

Al[i] + BIil;

A[i+1] + Bl[i+1];
Al[i+2] + Bl[i+2];
A[i+3] + B[i+3];

addFourThingsAtOnceAndStoreResult(&C[i], &A[i]l, &BI[i]);

- Usually the last level of parallelism you care about

How to:

- Write vectorization intrinsics yourself (hard, not so portable)

- Use a portable SIMD libraries
- Use compiler directives (OpenMP, ...)

HPC Master Class

pp

THERE ARE MANY FORMS OF PARALLELISM

Network connection

- Vectorization
- CPU threads
- Inter-node messaging

HPC Master Class

CPU MULTITHREADING (SHARED MEMORY PARALLELISM)

- Modern processors have multiple cores

- Cores share the same memory memory
- Cores can do different things « simultaneously » HARDWARE ‘ * ‘ ‘ ‘ ‘ ‘ * * ‘ *

- A process can run several threads

- Athread is a software abstraction to do parallelism SOFTWARE m m

- You can have as many threads you want, typically you Process 1 Process 2
want 1 thread = 1 core

(From https://smileipic.qgithub.io/Smilei/)

Thread1 Thread1
Thread?2 Thread?2
process Thread3 Thread3
Thread4 7 x Thread4
Thread5 Thread5

HPC Master Class @LPP

https://smileipic.github.io/Smilei/

CPU MULTITHREADING (SHARED MEMORY PARALLELISM)

- Modern processors have multiple cores

- Cores share the same memory memory
- Cores can do different things « simultaneously » HARDWARE ‘ * ‘ ‘ ‘ ‘ ‘ * * ‘ *

- A process can run several threads

- Athread is a software abstraction to do parallelism SOFTWARE m m

- You can have as many threads you want, typically you Process 1 Process 2
want 1 thread = 1 core

(From https://smileipic.qgithub.io/Smilei/)

Potential
cost!

Thread1 Thread1

Thread? Thread?
process Thread3 Thread3
Thread4 7 Thread4
Threadb Thread5

HPC Master Class @LPP

https://smileipic.github.io/Smilei/

Thread1 Thread?2

- Modern processors have multiple cores

- Cores share the same memory reading

- Cores can do different things « simultaneously »

- A process can run several threads
- Athread is a software abstraction to do parallelism

- You can have as many threads you want, typically you
want 1 thread = 1 core

Thread1 Thread?2

- Modern processors have multiple cores ‘ _
array[i] =2 ™\ array[i] = 3

- Cores share the same memory
- Cores can do different things « simultaneously »

- A process can run several threads

- Athread is a software abstraction to do parallelism | What is array[l] ?
- You can have as many threads you want, typically « Race condition » (concurrent access)
you want 1 thread = 1 core —> « atomic » (sequential) access

Thread1 Thread2
- Two theads access nearby elements that fall in the
same cache line interval
- Cache is invalidated at each access v v
- Destroys performance
- Solution : cache alignment, padding, ... < >

Cache line interval

OTHER TYPICAL MULTITHREADING PITFALLS...

Order of operations

- (A+B) +C = A+(B+C)
- Order of operations done in parallel is NOT guaranteed
- Rounding errors will be different each time you run your program

Random numbers

- Random number are pseudo-random series
- If not using random seeds, series will be identical on different threads (or proc.), probably useless
- If using random seeds, debugging will be non-deterministic and very difficult

Debugging
- Is painful...
- Special debuggers : ddt, totalview... or prints with thread ID

HPC Master Class @)L

PP

CPU MULTITHREADING (SHARED MEMORY PARALLELISM)

Different usage of threads

- Data parallelism
- Push N particles on P threads
- Update N magnetic field nodes on P threads...

- Task parallelism
- Push particles while dumping diagnostics

How to?

- Compiler directives: OpenMP, OpenACC
- Describe parallelism of code blocks and the compiler does it for you
- Simple to write, hard to optimize

- Thread libraries
- Standard C++ threads, TBB, pthread
- You have control, more difficult to write, easier to optimize

HPC Master Class

DISTRIBUTED PARALLELISM

Network connection

Cores

GPUs

Node N

- Vectorization
- CPU threads
- Inter-node messaging

HPC Master Class

DISTRIBUTED PARALLELISM

Network connection

Cores

Proc.1

Proc.2

Proc.3

Proc.4

HPC Master Class

DISTRIBUTED PARALLELISM

Proc.1

Proc.2

Proc.3

Proc.4

Network connection

Nele [l Node 2

Embarrassingly parallel

HPC Master Class

Cores

DISTRIBUTED PARALLELISM

Network connection

Cores

Local communications

Proc.1

Proc.2

Proc.3

Proc.4 I

HPC Master Class

DISTRIBUTED PARALLELISM

Network connection

Cores

Node 2 Node N

Proc.1 Global communications (broadcast/scatter) |

Proc.2

Proc.3

Proc.4

HPC Master Class

DISTRIBUTED PARALLELISM

Network connection

Cores

Node 2

Proc.1 Global communications (gather) |
Proc.2 T

Proc.3 ‘

Proc.4

HPC Master Class

DISTRIBUTED PARALLELISM

Network connection

Cores

Nele [l Node 2 Node N

- Explicit code to implement communications across different processes
- communications have a cost (per com + per byte)
- global communications do not scale

How to? - Message Passing Interface (MPI) library is de facto a standard in HPC
- Standard protocol, different implementations (MPICH, OpenMPI, IntelMPI,...)

HPC Master Class

- Cut the workload in N processes
- Each process computes the equations on its part of the work load
- They « synchronize » before going to next step

- Cut the workload in N processes
- Each process computes the equations on its part of the work load
- They « synchronize » before going to next step, « ghost » regions (copy from overlapped neighbor domain)

Proc.2 Thread4

Proc.2 Thread3
roc.1

Proc.2 Thread?2
Proc.2 Thread1 Proc.2

(From https://smileipic.qgithub.io/Smilei/)

https://smileipic.github.io/Smilei/

HYBRID THREAD+PROCESS (DISTRIBUTED/SHARED) PARALLELISM

- Take advantage that cores on the same node share
memory : N0 communication overhead

- |Is more complex because you now deal with two
parallelization paradigms possibly requiring
adjustments to your data structures (what’s optimal Process 1 Process 2
for MPI may not be for threads and vice versa) i i

- Hybrid thread+MPI parallelization generally comes
after full MPI implementations

(From https://smileipic.qgithub.io/Smilei/)

HPC Master Class @OLPP

https://smileipic.github.io/Smilei/

Scalability is the property of your program to continue taking advantage of more parallelism

T total runtime in serial, T(p) runtime on p cores ,s: sequential fraction, f: parallel fraction

g _ r T B 1 . 1
SO Ry e =

Amdahl’s law tells you how the runtime changes when the total work load is constant and the
number of cores increases. The serial fraction kills scalability.

THE DEPRESSING AMDAHL’S LAW

Assume [= 95%

Sa — f Sa(lOO) ~ 17

HPC Master Class

Amdahl's Law

Number of processors

Parallel portion
50%

—-— 90%

Assume you increase the work load proportionally to
the number or cores. Parallel time is T=1

How much slower the serial version will be if a fraction s of the code is serial?

T s+pf
T'(p) 1

=1—f+pf=s—(s=1)p

Gustafson’s law tells you how you can benefit from parallelization for solving a better problem.

GUSTAFSON’S LAW

Assume [= 95%

Gustafson's Law: S(P) = P-a*(P-1)

0.1 % (x-1))
S02% (x-1)

(x-1)
-0.6#(x-1) —
207 * «1.\-1)///
-0.8#x-1)

/(f'u.u (x-1)

_~
_~

E -
L

b

Sg= s—(s—1)p S,(100) ~ 95

&
7
'
=3
3
8
2
2

Number of Processors - P

Neither Amdahl’s or Gustafson’s law are right/wrong. They are guidelines as to how your
parallelization behaves depending on what you want to achieve.

Testing Amdahl’s law : strong scaling test
Testing Gustafson’s: weak scaling test

HPC Master Class LPP

LOAD BALANCING

Example of some strategy (from SMILEI PIC code)
Cut the spatial domain in many regular rectangular « patches »

How do you distribute those patches across MPI processes?

Some patches have many particles... some few

Equal number of patches per process will not balance the work load

(From https://smileipic.qgithub.io/Smilei/)

HPC Master Class @LPP

https://smileipic.github.io/Smilei/

SCALABILITY

You need a way to give about the same work load to each process
SMILEI : Hilbert Space Filling Curve, fractal 1D line that passes through each of the patches
« periodically » assess unbalance growth (from particle motion)

Cut the line in N segments of approximately equal work load

(From https://smileipic.qgithub.io/Smilei/)

HPC Master Class

https://smileipic.github.io/Smilei/

Example in SMILEI simulations

=2y =16 =12 =08 =04 00 0.4 0.8 1.2 1.6 2.0
128 : '

64

0

- _

(@)}
B

=
N
(o]

time

(@)]
B

Patches Y coordinate

o

128

64

\4 0
0 256 517 768 1024

Patches X coordinate
(From https://smileipic.github.io/Smilei/)

https://smileipic.github.io/Smilei/

DYNAMIC LOAD BALANCING ADAPTIVE MESH REFINEMENT

(From https://qgithub.com/pharehub/phare)

N; at t=239.6600

560

540 A
520 A

500 - | | - - Ty

aso == (L1 H Ex

460 - F 04

440 A - 0.2

420 7] T T T T T 0.0

560

540

520

500

480

460

440

420
1300 1400 1500 1600 1700 1800
X

HPC Master Class @O LPP

https://github.com/pharehub/phare

MPI + CPU THREADS

If you have many patches per process and you treat them sequentially you waste time

Handle local patches with N threads

HEEBN H EHEBN H EEB H EEB HEHEBN
threads threads threads threads threads

(From https://smileipic.github.io/Smilei/)

Load balance also applies to how work load is dispatched across threads...

You don’t want 1 thread to do everything while the other wait...

HPC Master Class @OLPP

https://smileipic.github.io/Smilei/

