SESSION 3-4

Time evolution




Faraday’s law
Ampere’s law

lon Vlasov eq.

lon moments

Quasi-neutrality

Generalized Ohm’s law
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Move particles

Fields to particles Accumulate moments

(E(r), B(r))
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population.hpp

void deposit()

{

static_assert(dimension == 1, "Population only implemented for 1D");
for (auto& n : m_density)

{
n =0.0; // Reset the field

for (auto& fx : m_flux.x)
fx = 0.9;

for (auto& fy : m_flux.y)
fy = 0.9;

for (auto& fz : m_flux.z)
fz = 0.9;

for (auto const& particle : m_particles)

{
double const iCell_float = particle.position[@] / m_grid->cell_size(Direction::X);
int const iCell_ = static_cast<int>(iCell_float);
double const reminder = iCell_float - iCell_;
auto const iCell = iCell_ + m_grid->dual_dom_start(Direction::X);
// TODO implement linear weighting deposit for the density and flux
}
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moments.hpp

template<std::size_t dimension>
void total_density(std::vector<Population<dimension>> const& populations, Field<dimension>& N)

{
for (auto ix = @; ix < N.data().size(); ++ix)
{
N(ix) = 0;
}
for (auto const& pop : populations)
{
// TODO calculate the total density
}
}

template<std::size_t dimension>
void bulk_velocity(std::vector<Population<dimension>> const& populations, Field<dimension> const& |
VecField<dimension>& V)

{
for (auto ix = @; ix < N.data().size(); ++ix)
{
V.x(ix) = @;
V.y(ix) = @;
V.z(ix) = @;
}
for (auto& pop : populations)
{
for (auto ix = @; ix < N.data().size(); ++ix)
{
V.x(ix) += pop.flux().x(ix);
V.y(ix) += pop.flux().y(ix);
V.z(ix) += pop.flux().z(ix);
}
}
// TODO calculate bulk velocity by dividing by density N
}

Accumulate moments
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https://arxiv.org/pdf/gr-gc/9909026



https://arxiv.org/pdf/gr-qc/9909026
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SESSION 4-5

Parallelism

MPI and particle parallelization




THERE ARE MANY FORMS OF PARALLELISM

Network connection

Node 1 Node 2

- Vectorization
- CPU threads
- Inter-node messaging

HPC Master Class

Node N

Cores

GPUs




VECTORIZATION

Network connection

Node 1

- \ectorization
- CPU threads
- Inter-node messaging

Node 2
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GPUs
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CPUs can actually do multiple operations at once in a vector fashion

Scalar Vectorized

17

Single Instruction Multiple Data : SIMD

€




VECTORIZATION

- your data structure needs to be « compatible » with
vector operations (structures of arrays)

- Compilers can automatically vectorize your code

-0O3 -march=native -mtune=native -fopt-info-vec

Manual (explicit) vectorization:

- Architecture dependent
- AVX512 : 8 double precision

- It’s very low level, difficult

Vectorization may speed up some parts of your code

for (int i=0; i<16; ++1i)
C[i] = A[i] + BI[il];

for (int i=0; i<16; i+=4) {

Clil]

Cli+1
Cli+2
Cli+3

for (int i=0; i<16; i+=4)

i

Al[i] + BIil;

A[i+1] + Bl[i+1];
Al[i+2] + Bl[i+2];
A[i+3] + B[i+3];

addFourThingsAtOnceAndStoreResult(&C[i], &A[i]l, &BI[i]);

- Usually the last level of parallelism you care about

How to:

- Write vectorization intrinsics yourself (hard, not so portable)

- Use a portable SIMD libraries
- Use compiler directives (OpenMP, ...)

HPC Master Class
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THERE ARE MANY FORMS OF PARALLELISM

Network connection

- Vectorization
- CPU threads
- Inter-node messaging

HPC Master Class




CPU MULTITHREADING (SHARED MEMORY PARALLELISM)

- Modern processors have multiple cores

- Cores share the same memory memory
- Cores can do different things « simultaneously » HARDWARE ‘ * ‘ ‘ ‘ ‘ ‘ * * ‘ *

- A process can run several threads

- Athread is a software abstraction to do parallelism SOFTWARE m m

- You can have as many threads you want, typically you Process 1 Process 2
want 1 thread = 1 core

(From https://smileipic.qgithub.io/Smilei/)

Thread1 Thread1
Thread?2 Thread?2
process Thread3 Thread3
Thread4 7 x Thread4
Thread5 Thread5
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CPU MULTITHREADING (SHARED MEMORY PARALLELISM)

- Modern processors have multiple cores

- Cores share the same memory memory
- Cores can do different things « simultaneously » HARDWARE ‘ * ‘ ‘ ‘ ‘ ‘ * * ‘ *

- A process can run several threads

- Athread is a software abstraction to do parallelism SOFTWARE m m

- You can have as many threads you want, typically you Process 1 Process 2
want 1 thread = 1 core

(From https://smileipic.qgithub.io/Smilei/)

Potential
cost!

Thread1 Thread1

Thread? Thread?
process Thread3 Thread3
Thread4 7 Thread4
Threadb Thread5

HPC Master Class @LPP


https://smileipic.github.io/Smilei/

Thread1 Thread?2

- Modern processors have multiple cores

- Cores share the same memory reading

- Cores can do different things « simultaneously »

- A process can run several threads
- Athread is a software abstraction to do parallelism

- You can have as many threads you want, typically you
want 1 thread = 1 core




Thread1 Thread?2

- Modern processors have multiple cores ‘ _
array[i] =2 ™\ array[i] = 3

- Cores share the same memory
- Cores can do different things « simultaneously »

- A process can run several threads

- Athread is a software abstraction to do parallelism | What is array[l] ?
- You can have as many threads you want, typically « Race condition » (concurrent access)
you want 1 thread = 1 core —> « atomic » (sequential) access




Thread1 Thread2
- Two theads access nearby elements that fall in the
same cache line interval
- Cache is invalidated at each access v v
- Destroys performance
- Solution : cache alignment, padding, ... < >

Cache line interval




OTHER TYPICAL MULTITHREADING PITFALLS...

Order of operations

- (A+B) +C = A+(B+C)
- Order of operations done in parallel is NOT guaranteed
- Rounding errors will be different each time you run your program

Random numbers

- Random number are pseudo-random series
- If not using random seeds, series will be identical on different threads (or proc.), probably useless
- If using random seeds, debugging will be non-deterministic and very difficult

Debugging
- Is painful...
- Special debuggers : ddt, totalview... or prints with thread ID

HPC Master Class @)L
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CPU MULTITHREADING (SHARED MEMORY PARALLELISM)

Different usage of threads

- Data parallelism
- Push N particles on P threads
- Update N magnetic field nodes on P threads...

- Task parallelism
- Push particles while dumping diagnostics

How to?

- Compiler directives: OpenMP, OpenACC
- Describe parallelism of code blocks and the compiler does it for you
- Simple to write, hard to optimize

- Thread libraries
- Standard C++ threads, TBB, pthread
- You have control, more difficult to write, easier to optimize

HPC Master Class



DISTRIBUTED PARALLELISM

Network connection

Cores

GPUs

Node N

- Vectorization
- CPU threads
- Inter-node messaging

HPC Master Class



DISTRIBUTED PARALLELISM

Network connection

Cores

Proc.1

Proc.2

Proc.3

Proc.4
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DISTRIBUTED PARALLELISM

Proc.1

Proc.2

Proc.3

Proc.4

Network connection

Nele [l Node 2

Embarrassingly parallel

HPC Master Class

Cores



DISTRIBUTED PARALLELISM

Network connection

Cores

Local communications

Proc.1

Proc.2

Proc.3

Proc.4 I

HPC Master Class



DISTRIBUTED PARALLELISM

Network connection

Cores

Node 2 Node N

Proc.1 Global communications (broadcast/scatter) |

Proc.2

Proc.3

Proc.4
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DISTRIBUTED PARALLELISM

Network connection

Cores

Node 2

Proc.1 Global communications (gather) |
Proc.2 T

Proc.3 ‘

Proc.4
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DISTRIBUTED PARALLELISM

Network connection

Cores

Nele [l Node 2 Node N

- Explicit code to implement communications across different processes
- communications have a cost (per com + per byte)
- global communications do not scale

How to? - Message Passing Interface (MPI) library is de facto a standard in HPC
- Standard protocol, different implementations (MPICH, OpenMPI, IntelMPI,...)

HPC Master Class



- Cut the workload in N processes
- Each process computes the equations on its part of the work load
- They « synchronize » before going to next step




- Cut the workload in N processes
- Each process computes the equations on its part of the work load
- They « synchronize » before going to next step, « ghost » regions (copy from overlapped neighbor domain)




Proc.2 Thread4

Proc.2 Thread3
roc.1

Proc.2 Thread?2
Proc.2 Thread1 Proc.2

(From https://smileipic.qgithub.io/Smilei/)



https://smileipic.github.io/Smilei/

HYBRID THREAD+PROCESS (DISTRIBUTED/SHARED) PARALLELISM

- Take advantage that cores on the same node share
memory : N0 communication overhead

- |Is more complex because you now deal with two
parallelization paradigms possibly requiring
adjustments to your data structures (what’s optimal Process 1 Process 2
for MPI may not be for threads and vice versa) i i

- Hybrid thread+MPI parallelization generally comes
after full MPI implementations

(From https://smileipic.qgithub.io/Smilei/)
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Scalability is the property of your program to continue taking advantage of more parallelism




T total runtime in serial, T(p) runtime on p cores ,s: sequential fraction, f: parallel fraction

g _ r T B 1 . 1
SO Ry e =

Amdahl’s law tells you how the runtime changes when the total work load is constant and the
number of cores increases. The serial fraction kills scalability.




THE DEPRESSING AMDAHL’S LAW

Assume [ = 95%

Sa — f Sa(lOO) ~ 17

HPC Master Class

Amdahl's Law

Number of processors

Parallel portion
50%

—-— 90%




Assume you increase the work load proportionally to
the number or cores. Parallel time is T=1

How much slower the serial version will be if a fraction s of the code is serial?

T s+pf
T'(p) 1

=1—f+pf=s—(s=1)p

Gustafson’s law tells you how you can benefit from parallelization for solving a better problem.




GUSTAFSON’S LAW

Assume [ = 95%

Gustafson's Law: S(P) = P-a*(P-1)
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Neither Amdahl’s or Gustafson’s law are right/wrong. They are guidelines as to how your
parallelization behaves depending on what you want to achieve.

Testing Amdahl’s law : strong scaling test
Testing Gustafson’s: weak scaling test

HPC Master Class LPP




LOAD BALANCING

Example of some strategy (from SMILEI PIC code)
Cut the spatial domain in many regular rectangular « patches »

How do you distribute those patches across MPI processes?

Some patches have many particles... some few

Equal number of patches per process will not balance the work load

(From https://smileipic.qgithub.io/Smilei/)

HPC Master Class @LPP


https://smileipic.github.io/Smilei/

SCALABILITY

You need a way to give about the same work load to each process
SMILEI : Hilbert Space Filling Curve, fractal 1D line that passes through each of the patches
« periodically » assess unbalance growth (from particle motion)

Cut the line in N segments of approximately equal work load

(From https://smileipic.qgithub.io/Smilei/)
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Example in SMILEI simulations
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(From https://smileipic.github.io/Smilei/)
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DYNAMIC LOAD BALANCING ADAPTIVE MESH REFINEMENT

(From https://qgithub.com/pharehub/phare)
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https://github.com/pharehub/phare

MPI + CPU THREADS

If you have many patches per process and you treat them sequentially you waste time

Handle local patches with N threads

HEEBN H EHEBN H EEB H EEB HEHEBN
threads threads threads threads threads

(From https://smileipic.github.io/Smilei/)

Load balance also applies to how work load is dispatched across threads...

You don’t want 1 thread to do everything while the other wait...

HPC Master Class @OLPP
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