SESSION 3-4

Time evolution

HYBRID KINETIC FORMALISM (REMINDER)

Faraday's law

Ampere's law

Ion Vlasov eq.

Ion moments

Quasi-neutrality

Generalized Ohm's law

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E},$$

$$\mu_0 \mathbf{j} = \nabla \times \mathbf{B},$$

$$\frac{\partial f_p}{\partial t} = -\mathbf{v} \cdot \nabla f_p - \frac{\mathbf{E} + \mathbf{v} \times \mathbf{B}}{m_p} \cdot \nabla_{\mathbf{v}} f_p,$$

$$n_i = \sum_p \int f_p(\mathbf{r}, \mathbf{v}) \, d^3 v,$$

$$\mathbf{v}_i = \frac{1}{n_i} \sum_p \int \mathbf{v} f_p(\mathbf{r}, \mathbf{v}) d^3 v,$$

$$n_i = n_e = n$$
,

$$\mathbf{v}_e = \mathbf{v}_i - rac{\mathbf{j}}{ne},$$

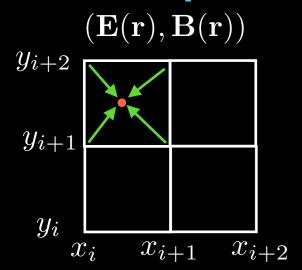
$$\mathbf{E} = -\mathbf{v}_e \times \mathbf{B} - \frac{1}{en} \nabla \cdot \mathbf{P}_e - \frac{m_e}{e} \frac{d\mathbf{v}_e}{dt}.$$

THE PIC LOOP

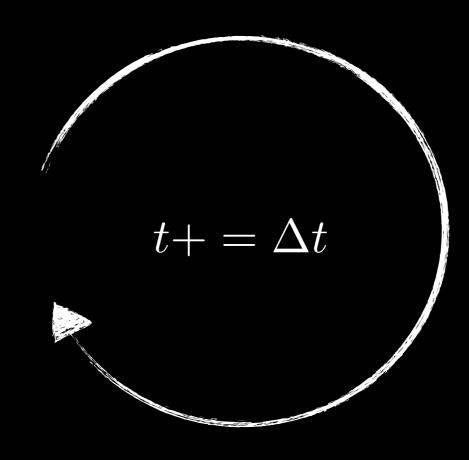
Move particles

$$m\frac{d\mathbf{v}}{dt} = q\left(\mathbf{E} + \mathbf{v}_{\mathbf{p}} \times \mathbf{B}\right) \qquad \frac{d\mathbf{r}_{\mathbf{p}}}{dt} = \mathbf{v}_{\mathbf{p}}$$

Fields to particles



$$\mathbf{Q}(\mathbf{r}) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} Q_{ij} S(\mathbf{r}_{\mathbf{p}} - \mathbf{r}_{ij})$$



Accumulate moments

$$y_{i+1}$$

$$y_{i}$$

$$x_{i}$$

$$x_{i+1}$$

$$x_{i+2}$$

$$n_{ij} = \sum_{p}^{N} S\left(\mathbf{r_p} - \mathbf{r_{ij}}\right) w_p$$
 $\mathbf{v}_{ij} = \frac{1}{n_{ij}} \sum_{p}^{N} \mathbf{v_p} S\left(\mathbf{r_p} - \mathbf{r_{ij}}\right) w_p$

Field equations

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}, \qquad \mathbf{v}_e = \mathbf{v}_i - \frac{\mathbf{j}}{ne},$$

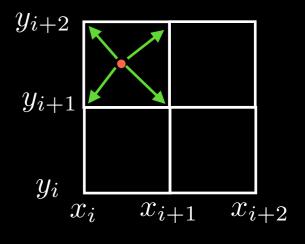
$$\mu_0 \mathbf{j} = \nabla \times \mathbf{B}, \qquad \mathbf{E} = -\mathbf{v}_e \times \mathbf{B} - \frac{1}{en} \nabla \cdot \mathbf{P}_e - \frac{m_e}{e} \frac{d\mathbf{v}_e}{dt}.$$

THE PIC LOOP

population.hpp

```
void deposit()
    static_assert(dimension == 1, "Population only implemented for 1D");
    for (auto& n : m_density)
        n = 0.0; // Reset the field
    }
    for (auto& fx : m_flux.x)
        fx = 0.0;
    for (auto& fy : m_flux.y)
        fy = 0.0;
    for (auto& fz : m_flux.z)
        fz = 0.0;
    for (auto const& particle : m_particles)
    {
        double const iCell_float = particle.position[0] / m_grid->cell_size(Direction::X);
        int const iCell_
                                 = static_cast<int>(iCell_float);
        double const reminder
                                 = iCell_float - iCell_;
        auto const iCell
                                 = iCell_ + m_grid->dual_dom_start(Direction::X);
        // TODO implement linear weighting deposit for the density and flux
    }
```

Accumulate moments



$$n_{ij} = \sum_{p}^{N} S(\mathbf{r_p} - \mathbf{r_{ij}}) w_p$$
$$\mathbf{v}_{ij} = \frac{1}{n_{ij}} \sum_{p}^{N} \mathbf{v_p} S(\mathbf{r_p} - \mathbf{r_{ij}}) w_p$$

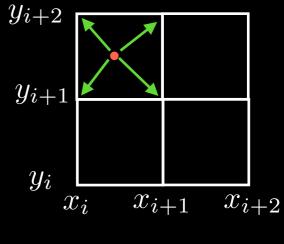
THE PIC LOOP

moments.hpp

```
template<std::size_t dimension>
void total_density(std::vector<Population<dimension>> const& populations, Field<dimension>& N)
{
    for (auto ix = 0; ix < N.data().size(); ++ix)
        N(ix) = 0;
    for (auto const& pop : populations)
        // TODO calculate the total density
}
template<std::size_t dimension>
void bulk_velocity(std::vector<Population<dimension>> const& populations, Field<dimension> const& //

                   VecField<dimension>& V)
    for (auto ix = 0; ix < N.data().size(); ++ix)
        V.x(ix) = 0;
        V.y(ix) = 0;
        V.z(ix) = 0;
    for (auto& pop : populations)
        for (auto ix = 0; ix < N.data().size(); ++ix)</pre>
            V.x(ix) += pop.flux().x(ix);
            V.y(ix) += pop.flux().y(ix);
            V.z(ix) += pop.flux().z(ix);
        }
    // TODO calculate bulk velocity by dividing by density N
```

Accumulate moments



$$n_{ij} = \sum_{p}^{N} S(\mathbf{r_p} - \mathbf{r_{ij}}) w_p$$
$$\mathbf{v}_{ij} = \frac{1}{n_{ij}} \sum_{p}^{N} \mathbf{v_p} S(\mathbf{r_p} - \mathbf{r_{ij}}) w_p$$

ITERATED CRANK NICHOLSON

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x}$$

$$\frac{u_j^{p_1,n+1} - u_j^n}{\Delta t} = \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x}$$

$$u_j^{n+1/2} = \frac{1}{2} \left(u_j^{p_1,n+1} + u_j^n \right)$$

$$\frac{u_j^{p_2,n+1} - u_j^n}{\Delta t} = \frac{u_{j+1}^{p_1,n+1/2} - u_{j-1}^{p_1,n+1/2}}{2\Delta x}$$

$$u_j^{n+1/2} = \frac{1}{2} \left(u_j^{p_2,n+1} + u_j^n \right)$$

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{u_{j+1}^{p_2,n+1/2} - u_{j-1}^{p_2,n+1/2}}{2\Delta x}$$

https://arxiv.org/pdf/gr-qc/9909026

3 STEPS ITERATED CRANK NICHOLSON

t Prediction

$$\begin{split} \mathbf{B}_{p1}^{n+1} &= \mathbf{B}^{n} - \Delta t \nabla \times \mathbf{E}^{n} \\ \mathbf{E}_{p1}^{n+1} &= -\mathbf{u}^{n} \times \mathbf{B}_{p1}^{n+1} + \frac{\nabla \times \mathbf{B}_{p1}^{n+1}}{N^{n}} - \frac{\nabla \cdot \mathbf{P_{e}}}{N^{n}} + \eta \nabla \times \mathbf{B}_{p1}^{n+1} - \nu \nabla^{2} \nabla \times \mathbf{B}_{\mathbf{p}1}^{\mathbf{n}+1} \\ (\mathbf{E}, \mathbf{B})^{n+1/2} &= < (\mathbf{E}, \mathbf{B}) >_{n}^{n+1} \\ \mathbf{r}_{p1}^{n+1/2} &= \mathbf{r}^{n} + \Delta t / 2 \mathbf{v}^{n} \\ \mathbf{E}, \mathbf{B} \left(\mathbf{r_{p1}^{n+1/2}} \right) &= \sum_{ijk} \left(\mathbf{E}, \mathbf{B}_{ijk} \right) W \left(|\mathbf{r}_{ijk} - \mathbf{r_{p1}^{n+1/2}}| \right) \\ m_{i} \frac{d\mathbf{v}_{p1}^{n+1}}{dt} &= e \left(\mathbf{v}^{n} \times + \mathbf{B}^{n+1/2} + \mathbf{E}^{n+1/2} \right) \\ N^{n+1} &= \sum_{p} w_{p} \mathbf{v}_{p1}^{n+1} W \left(|\mathbf{r}_{ijk} - \mathbf{r_{p1}^{n+1}}| \right) \qquad u^{n+1} &= \sum_{p} w_{p} \mathbf{v}_{p1}^{n+1} W \left(|\mathbf{r}_{ijk} - \mathbf{r_{p1}^{n+1}}| \right) \end{split}$$

Prediction

$$\begin{split} \mathbf{B}_{p2}^{n+1} &= \mathbf{B}^{n} - \Delta t \nabla \times \mathbf{E}^{n+1/2} \\ \mathbf{E}_{p2}^{n+1} &= -\mathbf{u}^{n+1} \times \mathbf{B}_{p2}^{n+1} + \frac{\nabla \times \mathbf{B}_{p2}^{n+1}}{N^{n+1}} - \frac{\nabla \cdot \mathbf{P_{e}}}{N^{n+1}} + \eta \nabla \times \mathbf{B}_{p2}^{n+1} - \nu \nabla^{2} \nabla \times \mathbf{B}_{\mathbf{p2}}^{\mathbf{n}+1} \\ \mathbf{r}_{p2}^{n+1/2} &= \mathbf{r}^{n} + \Delta t / 2 \mathbf{v}^{n} \\ (\mathbf{E}, \mathbf{B})^{n+1/2} &= < (\mathbf{E}, \mathbf{B}) >_{n}^{n+1} \\ m_{i} \frac{d \mathbf{v}_{p2}^{n+1}}{dt} &= e \left(\mathbf{v}^{n} \times + \mathbf{B}^{n+1/2} + \mathbf{E}^{n+1/2} \right) \\ N^{n+1} &= \sum_{p} w_{p} \mathbf{v}_{p1}^{n+1} W \left(|\mathbf{r}_{ijk} - \mathbf{r}_{p1}^{n+1}| \right) \qquad u^{n+1} &= \sum_{p} w_{p} \mathbf{v}_{p1}^{n+1} W \left(|\mathbf{r}_{ijk} - \mathbf{r}_{p1}^{n+1}| \right) \end{split}$$

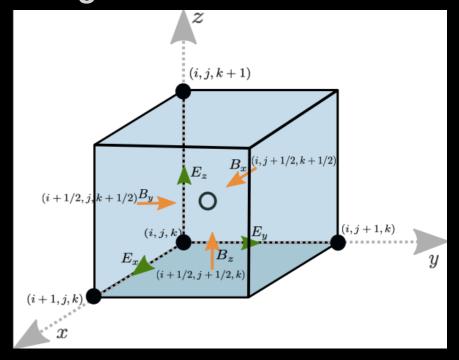
Correction

 $t + \Delta t$

$$\mathbf{B}^{n+1} = \mathbf{B}^{n} - \Delta t \nabla \times \mathbf{E}^{n+1/2}$$

$$\mathbf{E}^{n+1} = -\mathbf{u}^{n+1} \times \mathbf{B}^{n+1} + \frac{\nabla \times \mathbf{B}^{n+1}}{N^{n+1}} - \frac{\nabla \cdot \mathbf{P_e}}{N^{n+1}} + \eta \nabla \times \mathbf{B}^{n+1} - \nu \nabla^2 \nabla \times \mathbf{B^{n+1}}$$

Yee grid

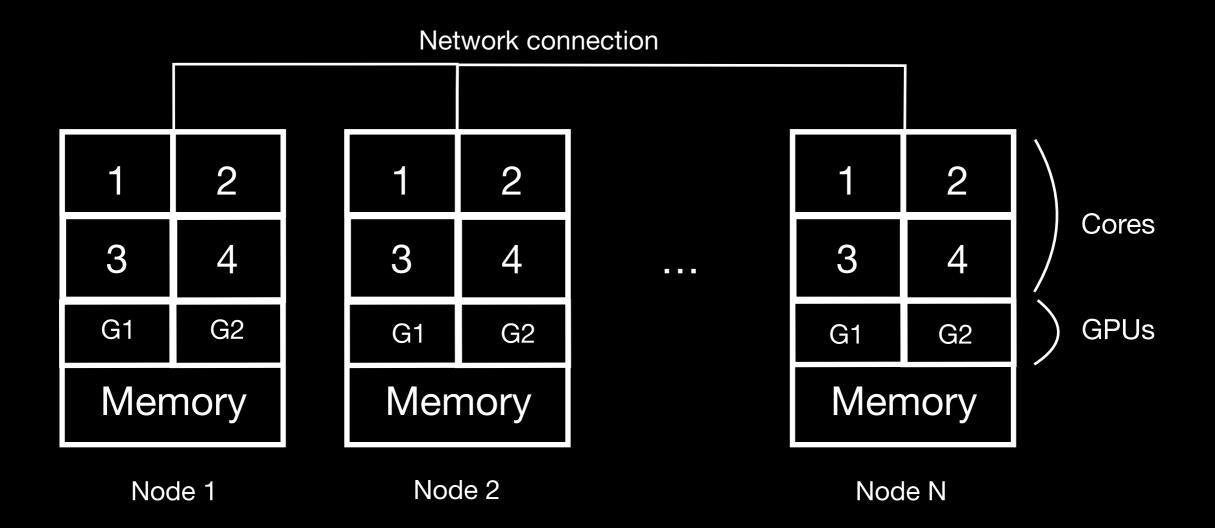


SESSION 4-5

Parallelism

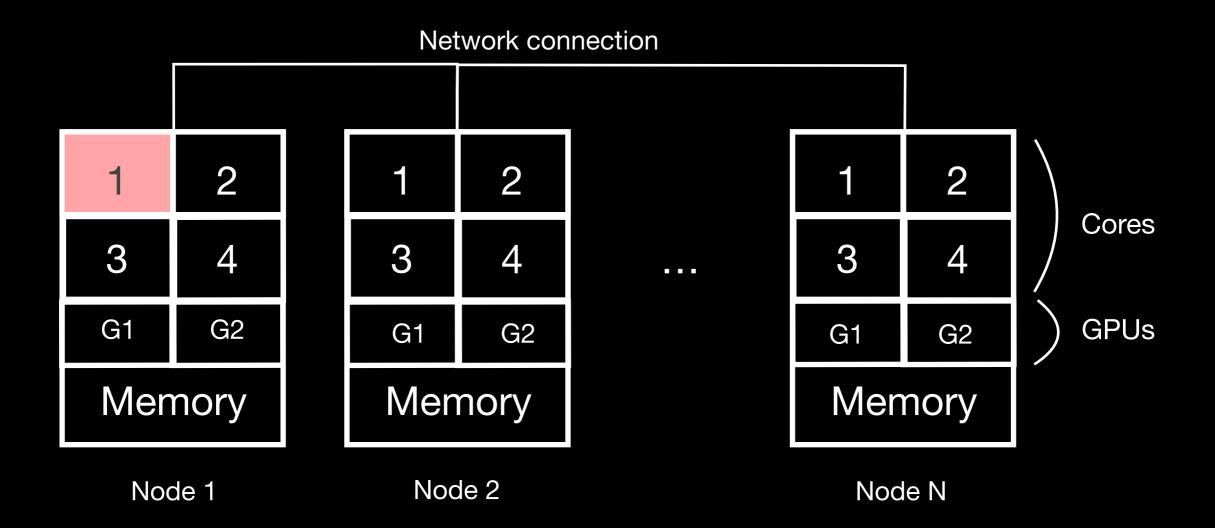
MPI and particle parallelization

THERE ARE MANY FORMS OF PARALLELISM



- Vectorization
- CPU threads
- Inter-node messaging

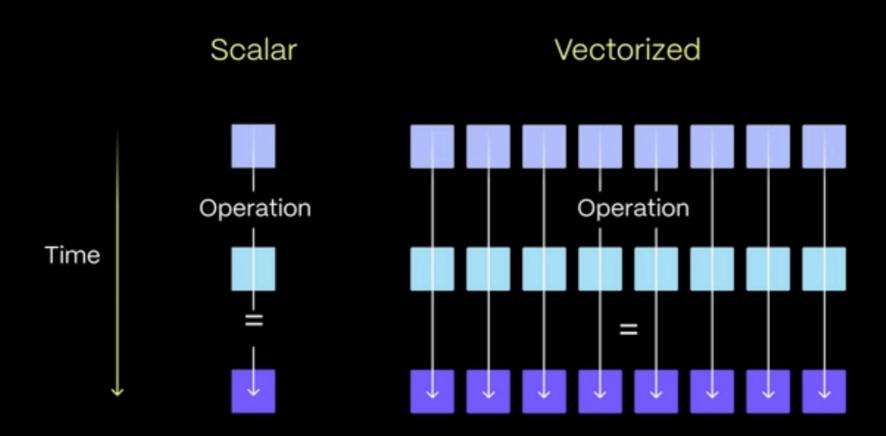
VECTORIZATION



- Vectorization
- CPU threads
- Inter-node messaging

VECTORIZATION

CPUs can actually do multiple operations at once in a vector fashion



Single Instruction Multiple Data: SIMD

VECTORIZATION

- your data structure needs to be « compatible » with vector operations (structures of arrays)
- Compilers can automatically vectorize your code

```
-O3 -march=native -mtune=native -fopt-info-vec
```

```
for (int i=0; i<16; ++i)
C[i] = A[i] + B[i];
```

Manual (explicit) vectorization:

- Architecture dependent
- AVX512: 8 double precision

```
for (int i=0; i<16; i+=4) {
    C[i] = A[i] + B[i];
    C[i+1] = A[i+1] + B[i+1];
    C[i+2] = A[i+2] + B[i+2];
    C[i+3] = A[i+3] + B[i+3];
}</pre>
```

- Vectorization may speed up some parts of your code
- It's very low level, difficult
- Usually the last level of parallelism you care about

```
for (int i=0; i<16; i+=4)
    addFourThingsAtOnceAndStoreResult(&C[i], &A[i], &B[i]);</pre>
```

How to:

- Write vectorization intrinsics yourself (hard, not so portable)
- Use a portable SIMD libraries
- Use compiler directives (OpenMP, ...)

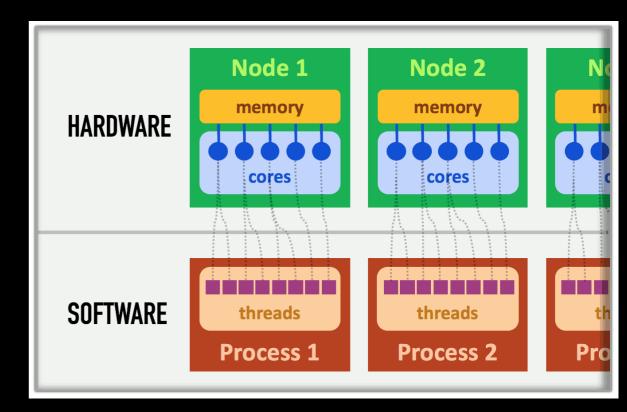
THERE ARE MANY FORMS OF PARALLELISM



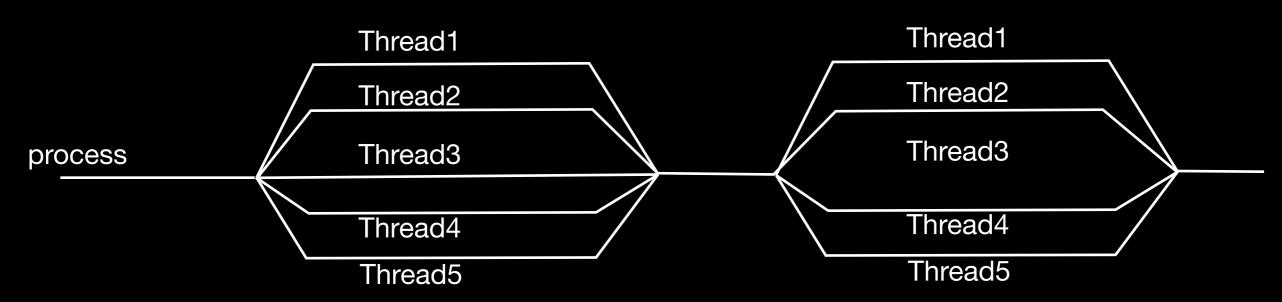
- Vectorization
- CPU threads
- Inter-node messaging

CPU MULTITHREADING (SHARED MEMORY PARALLELISM)

- Modern processors have multiple cores
- Cores share the same memory
- Cores can do different things « simultaneously »
- A process can run **several** *threads*
- A thread is a **software abstraction** to do parallelism
- You can have as many threads you want, typically you want 1 thread = 1 core

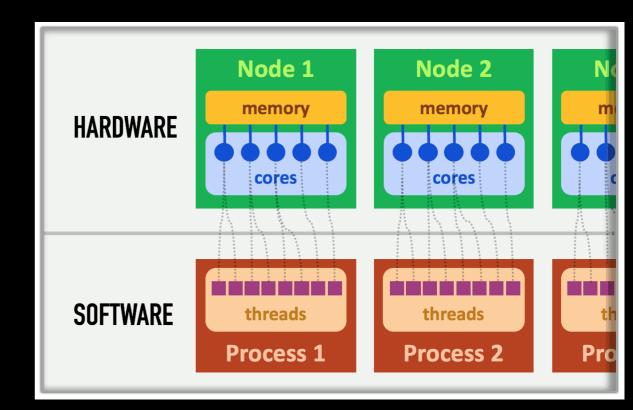


(From https://smileipic.github.io/Smilei/)

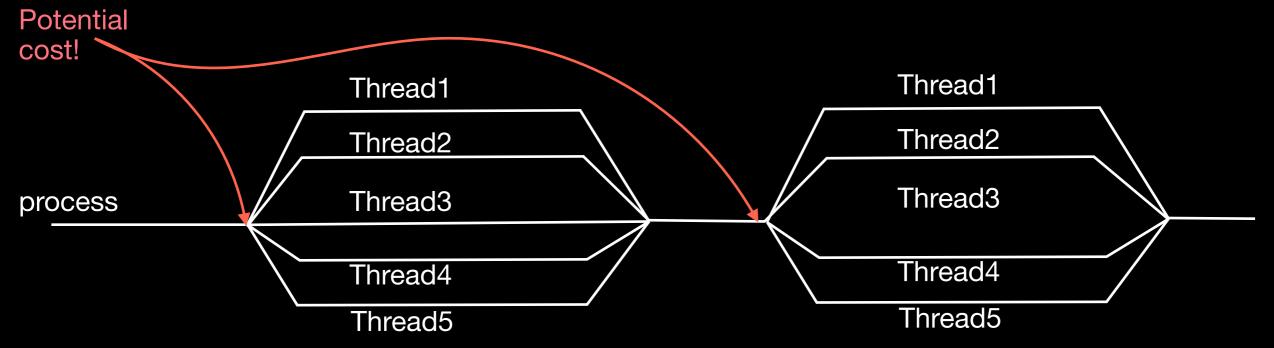


CPU MULTITHREADING (SHARED MEMORY PARALLELISM)

- Modern processors have multiple cores
- Cores share the same memory
- Cores can do different things « simultaneously »
- A process can run **several** *threads*
- A thread is a software abstraction to do parallelism
- You can have as many threads you want, typically you want 1 thread = 1 core

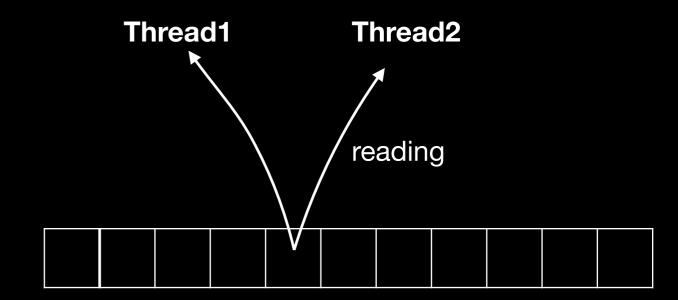


(From https://smileipic.github.io/Smilei/)



Typical multithreading pitfalls: Race conditions

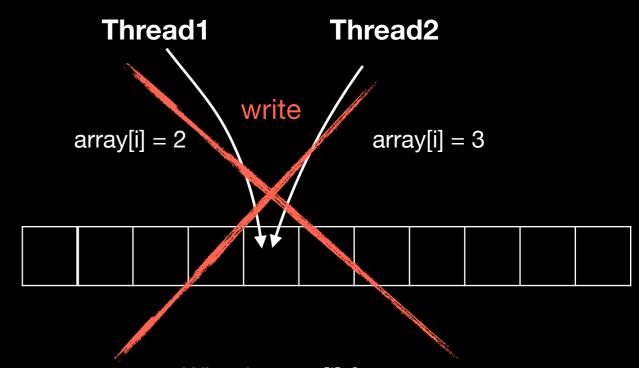
- Modern processors have multiple cores
- Cores share the same memory
- Cores can do different things « simultaneously »



- A process can run **several** *threads*
- A thread is a **software abstraction** to do parallelism
- You can have as many threads you want, typically you want 1 thread = 1 core

TYPICAL MULTITHREADING PITFALLS: RACE CONDITIONS

- Modern processors have multiple cores
- Cores share the same memory
- Cores can do different things « simultaneously »
- A process can run **several** *threads*
- A thread is a **software abstraction** to do parallelism
- You can have as many threads you want, typically you want 1 thread = 1 core



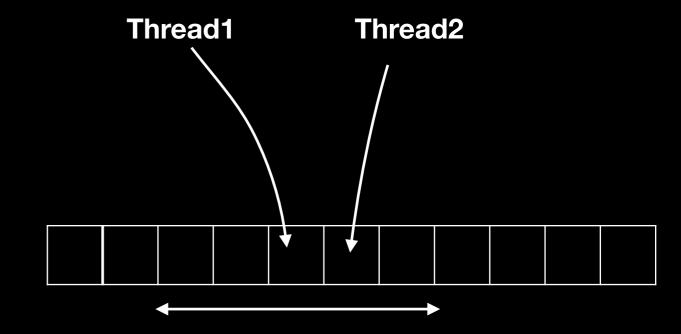
What is array[I]?

« Race condition » (concurrent access)

-> « atomic » (sequential) access

TYPICAL MULTITHREADING PITFALLS: FALSE SHARING

- Two theads access nearby elements that fall in the same cache line interval
- Cache is invalidated at each access
- Destroys performance
- Solution : cache alignment, padding, ...



Cache line interval

OTHER TYPICAL MULTITHREADING PITFALLS...

Order of operations

- (A+B) + C != A+(B+C)
- Order of operations done in parallel is NOT guaranteed
- Rounding errors will be different each time you run your program

Random numbers

- Random number are pseudo-random series
- If not using random seeds, series will be identical on different threads (or proc.), probably useless
- If using random seeds, debugging will be non-deterministic and very difficult

Debugging

- Is painful...
- Special debuggers : ddt, totalview... or prints with thread ID

CPU MULTITHREADING (SHARED MEMORY PARALLELISM)

Different usage of threads

- Data parallelism

- Push N particles on P threads
- Update N magnetic field nodes on P threads...

- Task parallelism

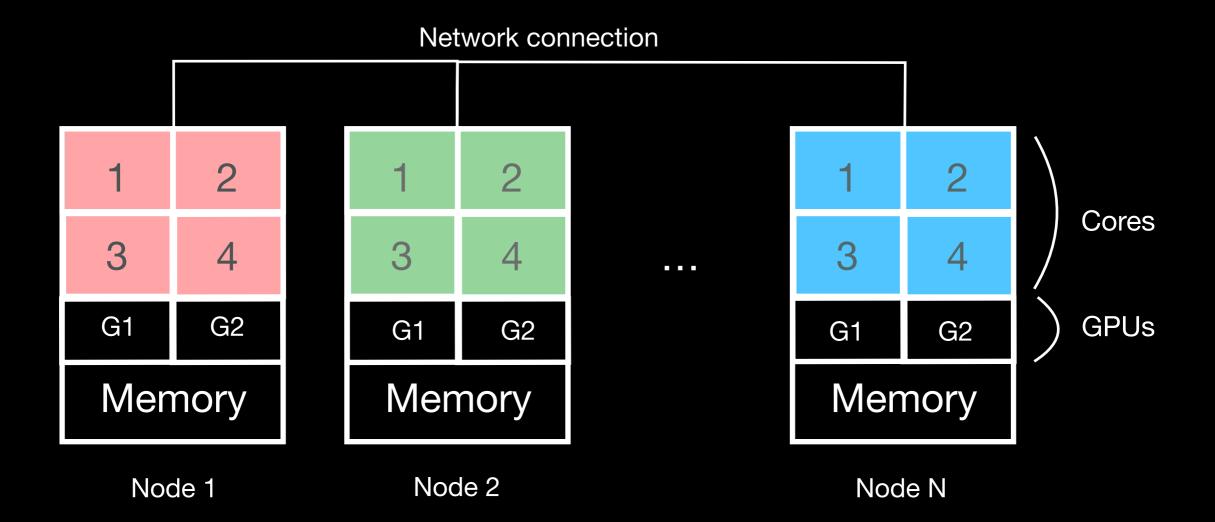
- Push particles while dumping diagnostics
- ____

How to?

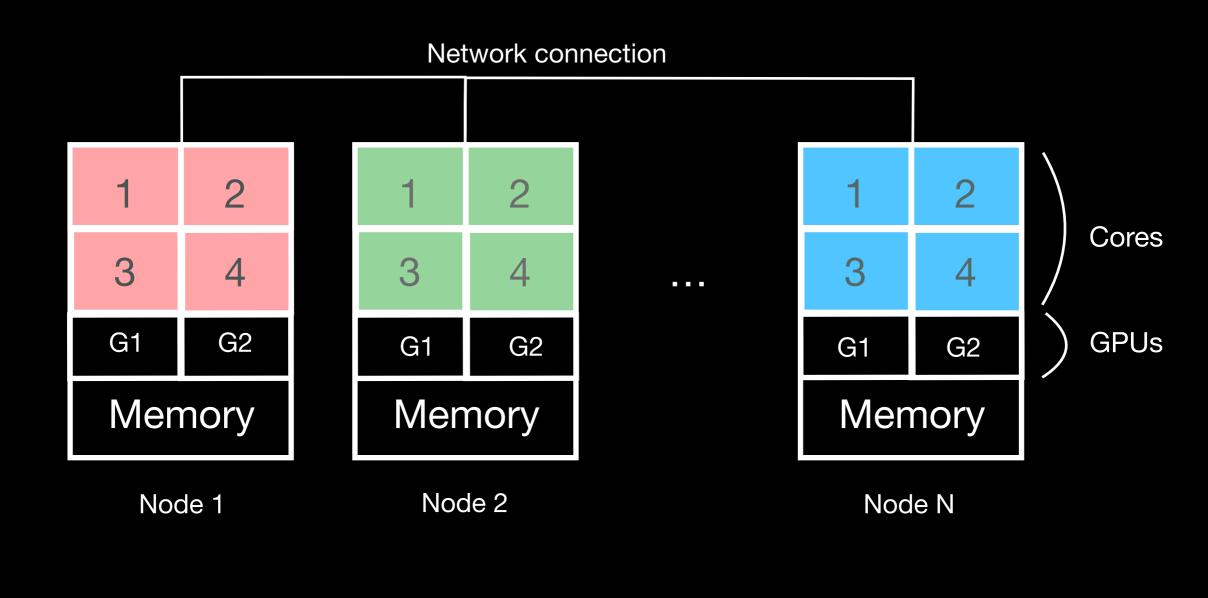
- Compiler directives: OpenMP, OpenACC
 - Describe parallelism of code blocks and the compiler does it for you
 - Simple to write, hard to optimize

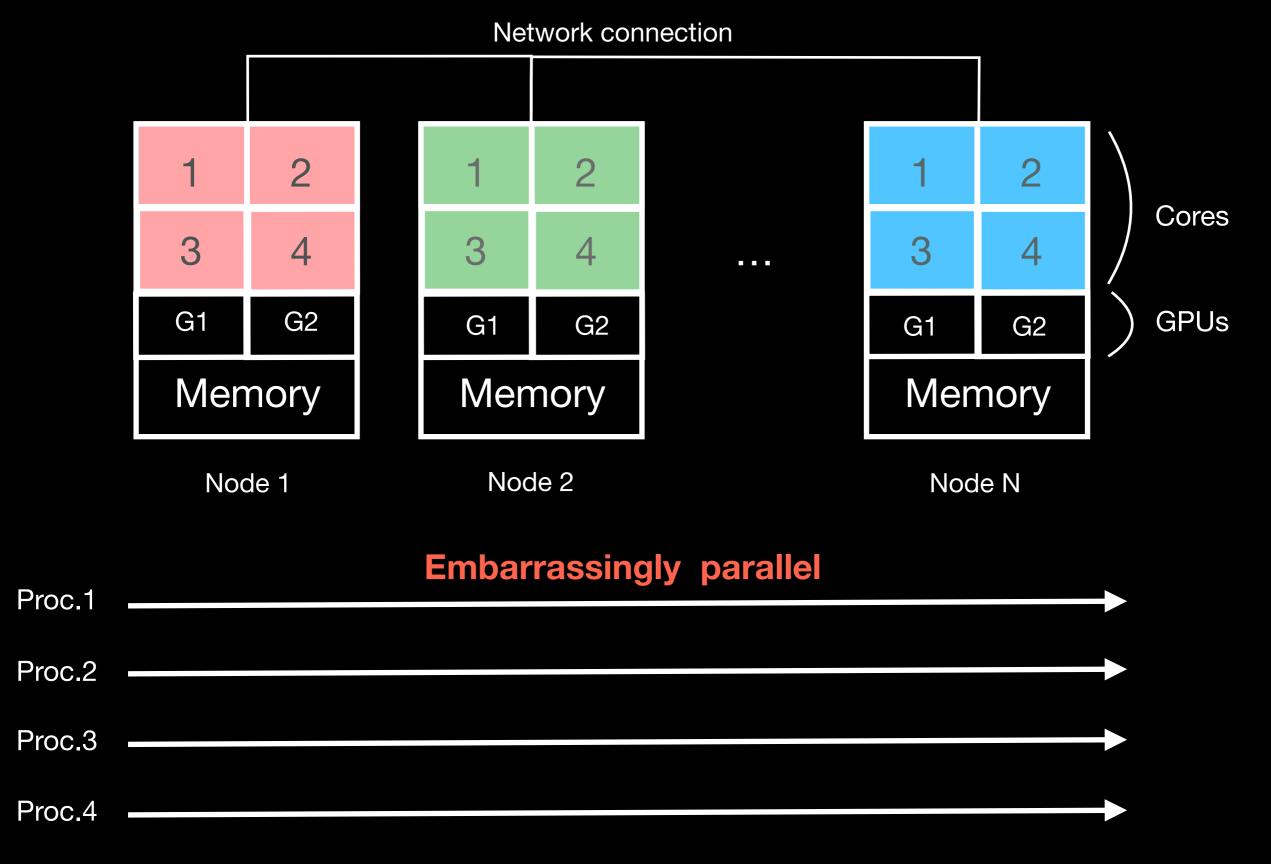
- Thread libraries

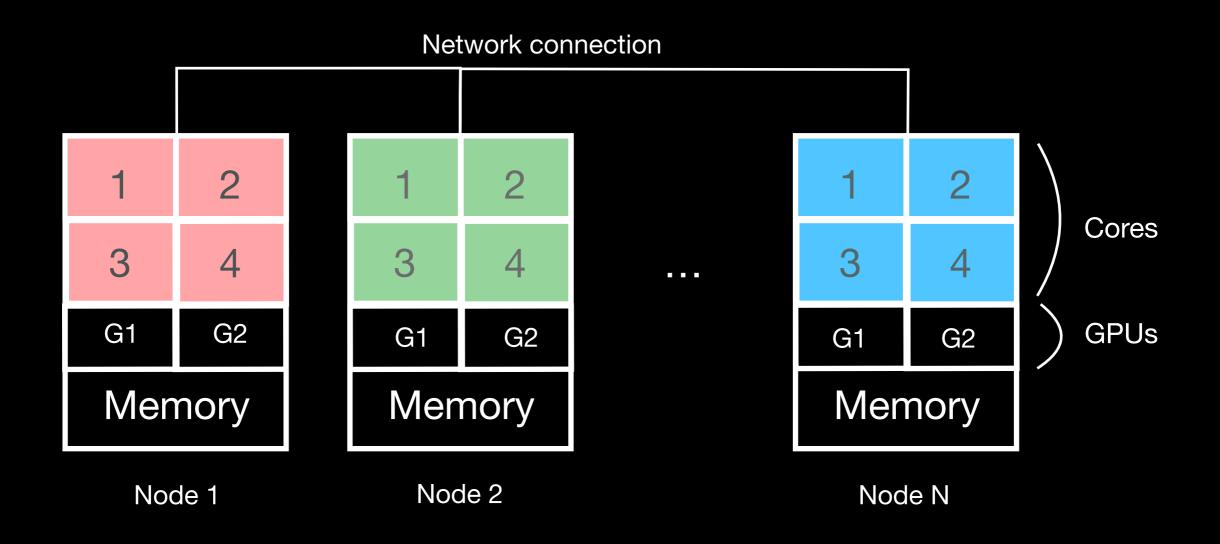
- Standard C++ threads, TBB, pthread
- You have control, more difficult to write, easier to optimize

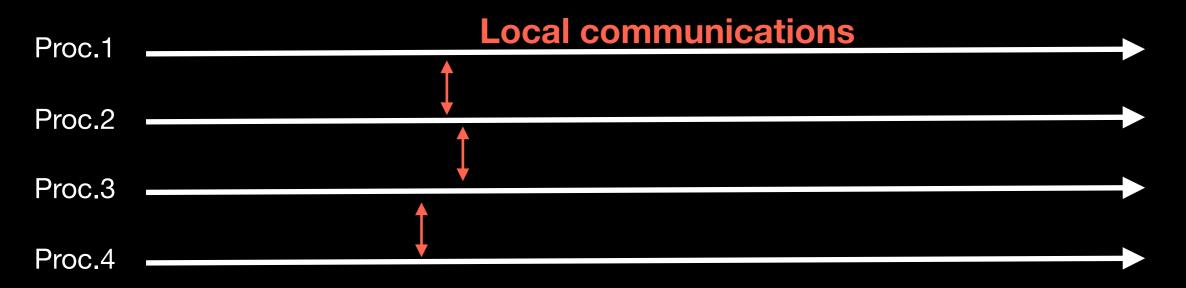


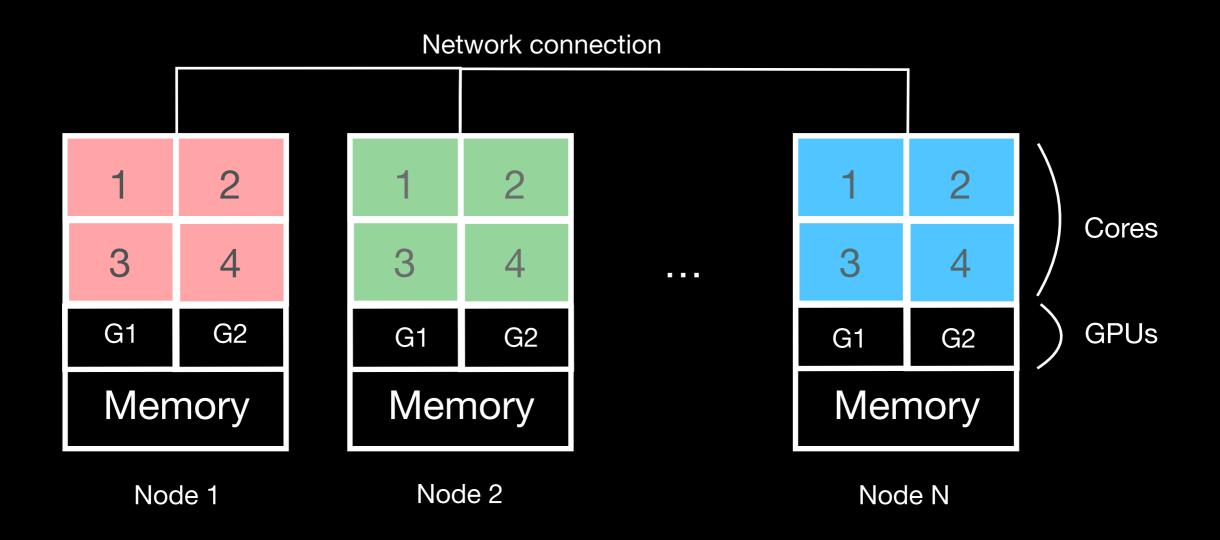
- Vectorization
- CPU threads
- Inter-node messaging

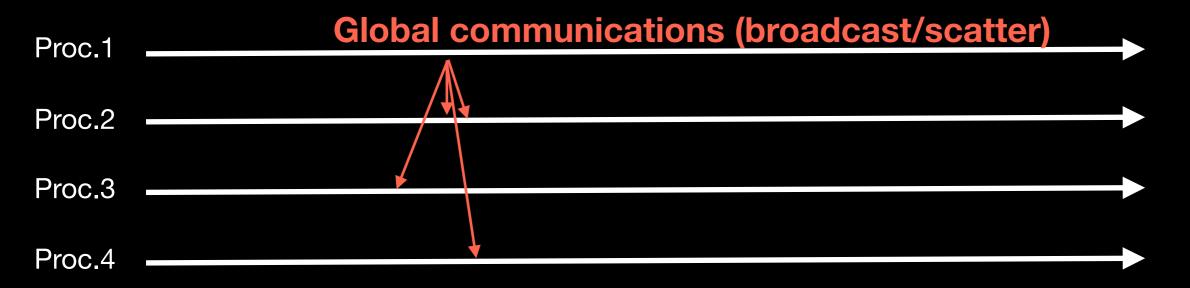


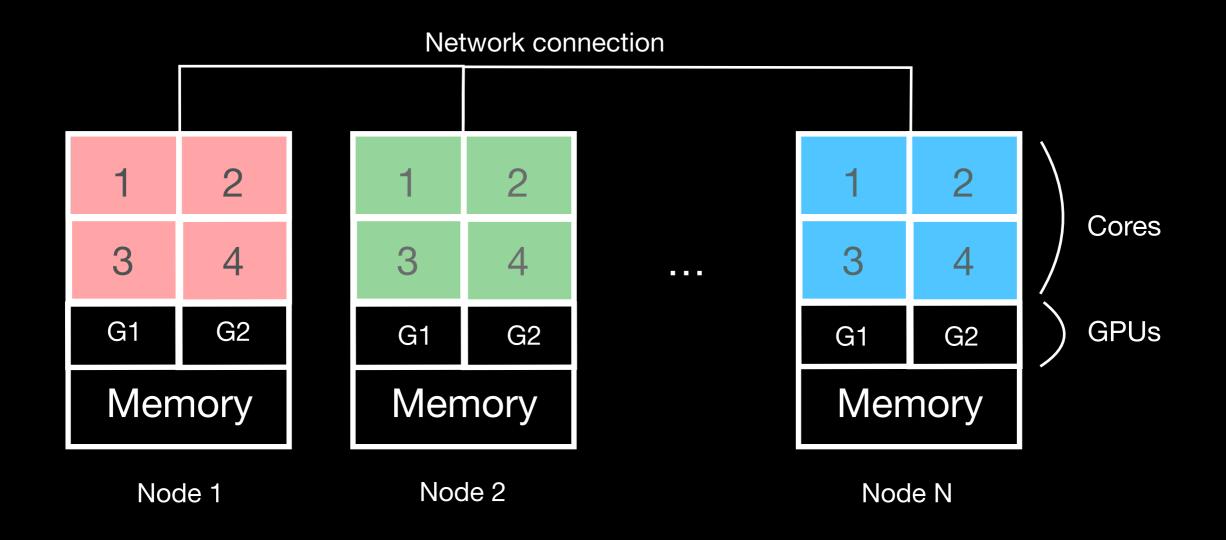


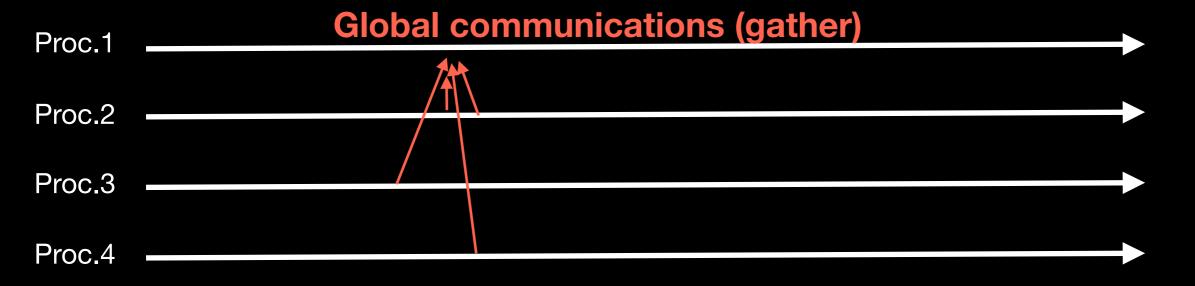


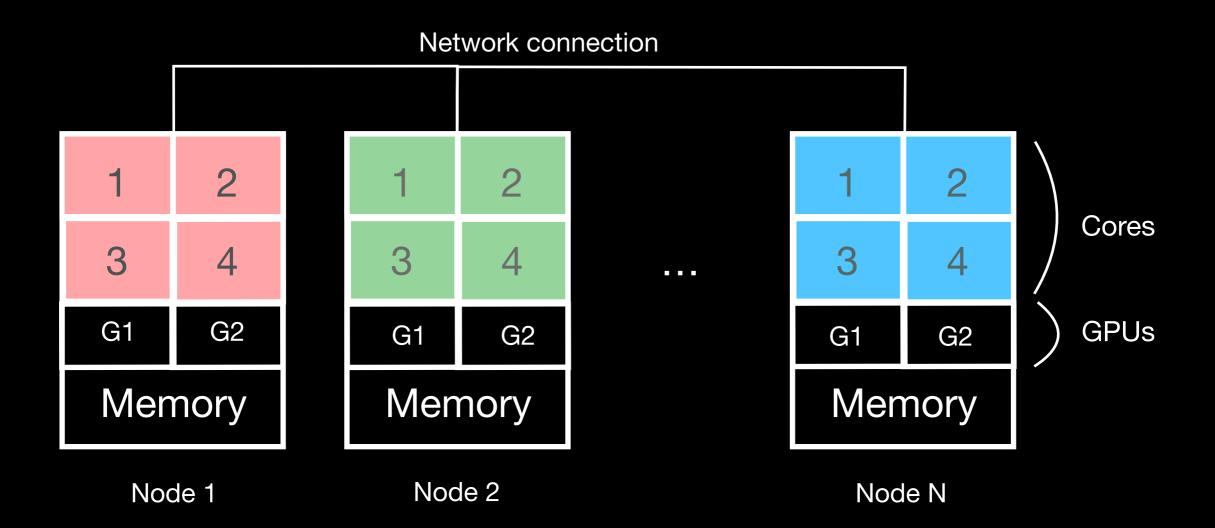










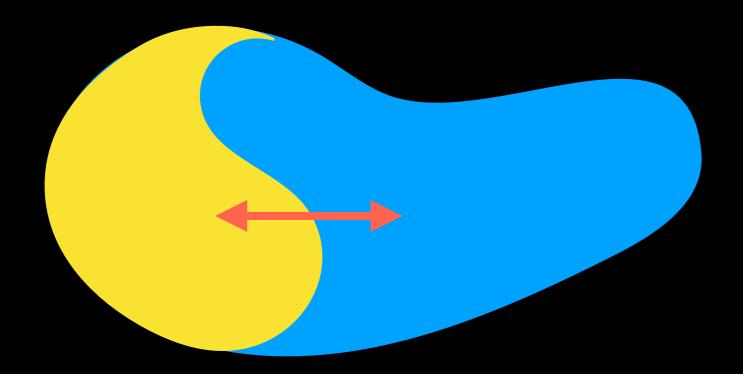


- Explicit code to implement communications across different processes
- communications have a cost (per com + per byte)
- global communications do not scale

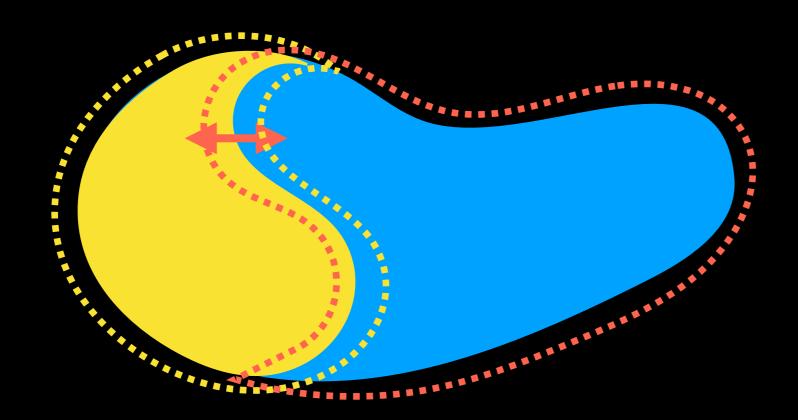
How to? - Message Passing Interface (MPI) library is de facto a standard in HPC

- Standard protocol, different implementations (MPICH, OpenMPI, IntelMPI,...)

WHAT IS PARALLEL?

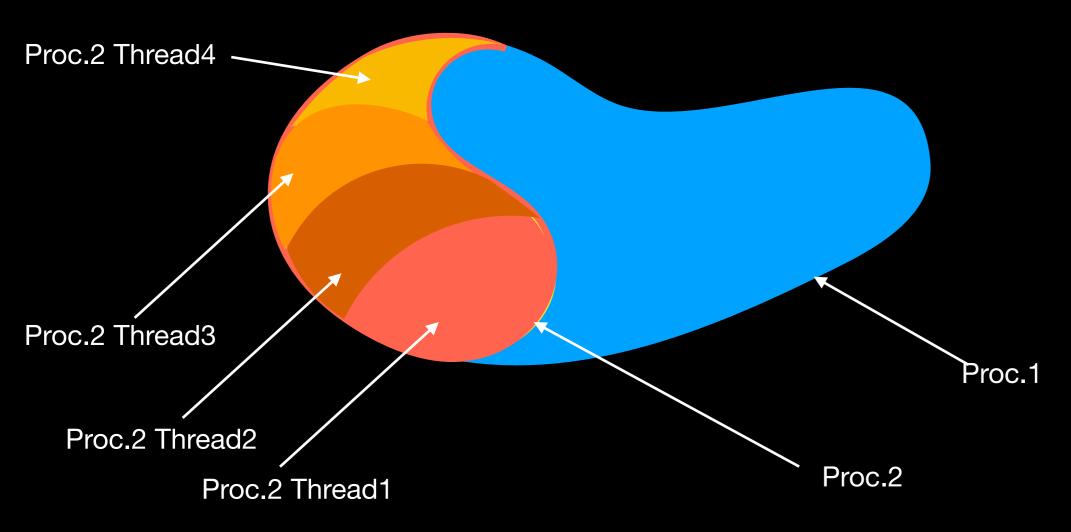


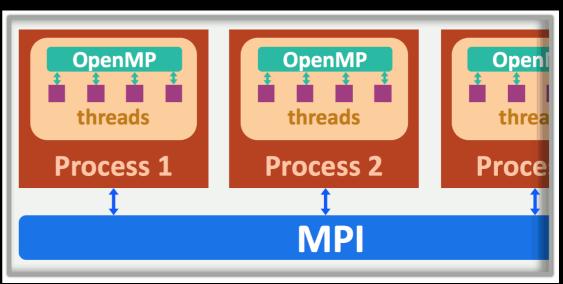
- Cut the workload in N processes
- Each process computes the equations on its part of the work load
- They « synchronize » before going to next step



- Cut the workload in N processes
- Each process computes the equations on its part of the work load
- They « synchronize » before going to next step, « ghost » regions (copy from overlapped neighbor domain)

HYBRID THREAD+PROCESS (DISTRIBUTED/SHARED) PARALLELISM

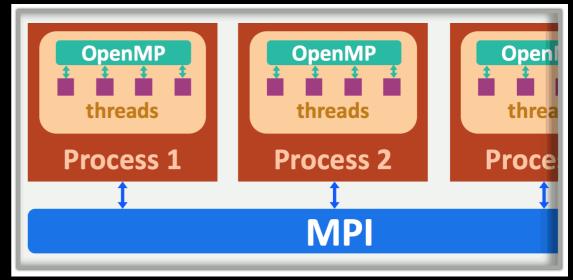




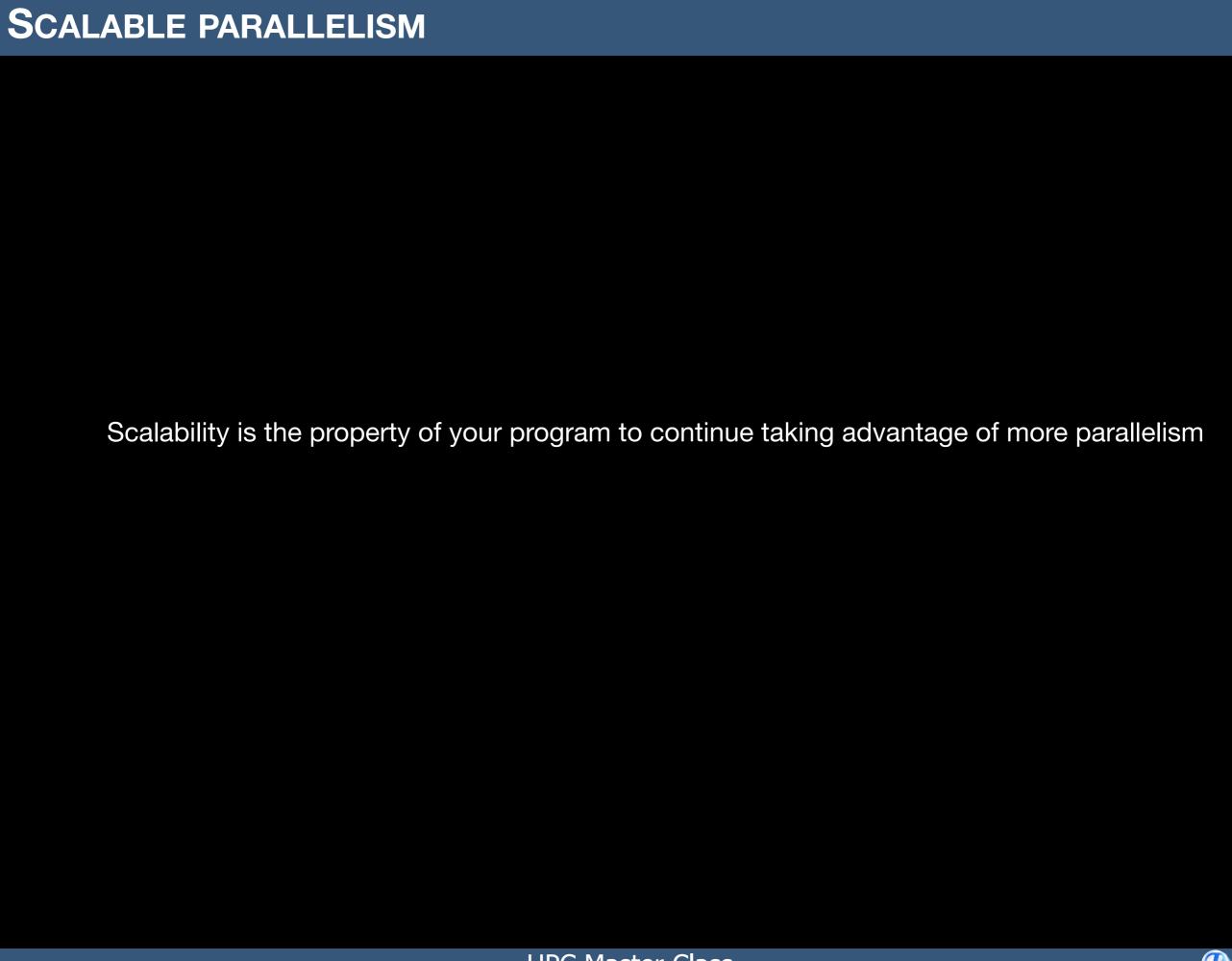
(From https://smileipic.github.io/Smilei/)

HYBRID THREAD+PROCESS (DISTRIBUTED/SHARED) PARALLELISM

- Take advantage that cores on the same node share memory: no communication overhead
- Is more complex because you now deal with two parallelization paradigms possibly requiring adjustments to your data structures (what's optimal for MPI may not be for threads and vice versa)
- Hybrid thread+MPI parallelization generally comes after *full MPI implementations*



(From https://smileipic.github.io/Smilei/)



THE DEPRESSING AMDAHL'S LAW

T total runtime in serial, T(p) runtime on p cores ,s: sequential fraction, f: parallel fraction

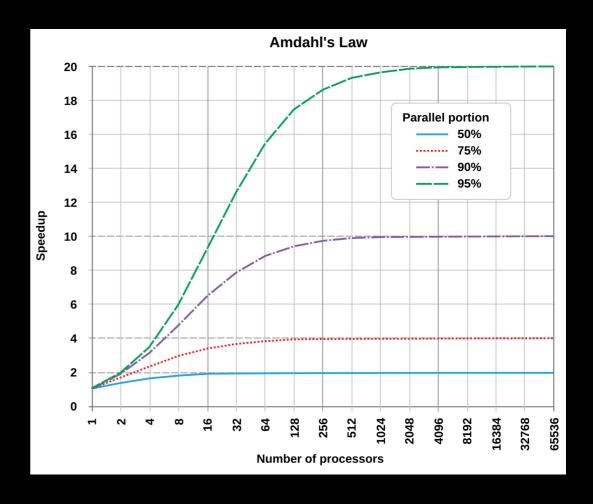
$$S_a = \frac{T}{T(p)} = \frac{T}{sT + f\frac{T}{p}} = \frac{1}{1 - f + \frac{f}{p}}$$
 $\lim_{p \to \infty} S_a = \frac{1}{s}$

Amdahl's law tells you how the runtime changes when the total work load is constant and the number of cores increases. The serial fraction kills scalability.

THE DEPRESSING AMDAHL'S LAW

$$\text{Assume } f=95\%$$

$$S_a = \frac{1}{1 - f + \frac{f}{p}}$$
 $S_a(100) \approx 17$



GUSTAFSON'S LAW

Assume you increase the work load *proportionally* to the number or cores. Parallel time is T=1

How much slower the serial version will be if a fraction s of the code is serial?

$$S_g = \frac{T}{T(p)} = \frac{s + pf}{1} = 1 - f + pf = s - (s - 1)p$$

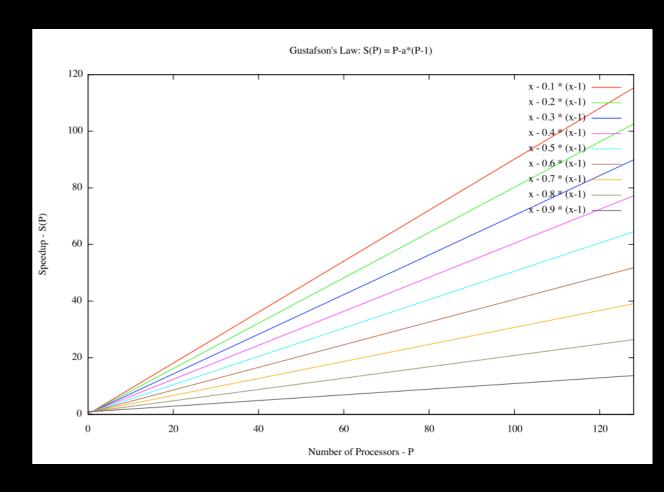
Gustafson's law tells you how you can benefit from parallelization for solving a better problem.

GUSTAFSON'S LAW

Assume
$$f=95\%$$

$$S_g = s - (s - 1)p$$

$$S_q(100) \approx 95$$

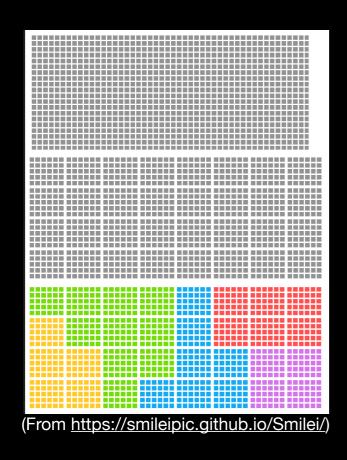


Neither Amdahl's or Gustafson's law are right/wrong. They are guidelines as to how your parallelization behaves depending on what you want to achieve.

Testing Amdahl's law: strong scaling test

Testing Gustafson's: weak scaling test

LOAD BALANCING



Example of some strategy (from SMILEI PIC code)

Cut the spatial domain in many regular rectangular « patches »

How do you distribute those patches across MPI processes?

Some patches have many particles... some few

Equal number of patches per process will not balance the work load

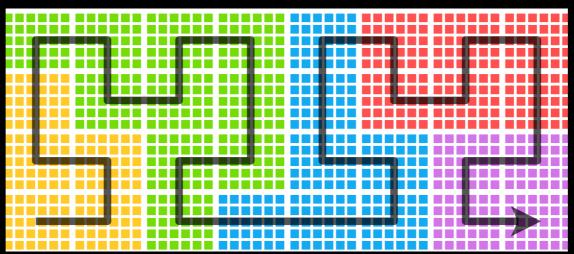
SCALABILITY

You need a way to give about the same work load to each process

SMILEI: Hilbert Space Filling Curve, fractal 1D line that passes through each of the patches

« periodically » assess unbalance growth (from particle motion)

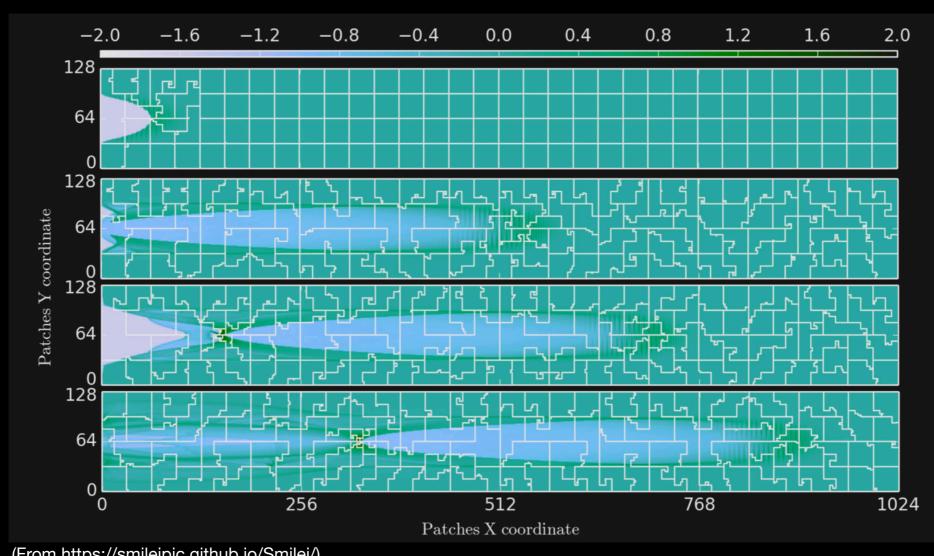
Cut the line in N segments of approximately equal work load



(From https://smileipic.github.io/Smilei/

DYNAMIC LOAD BALANCING THE PARTICLE COMPUTATIONS

Example in SMILEI simulations



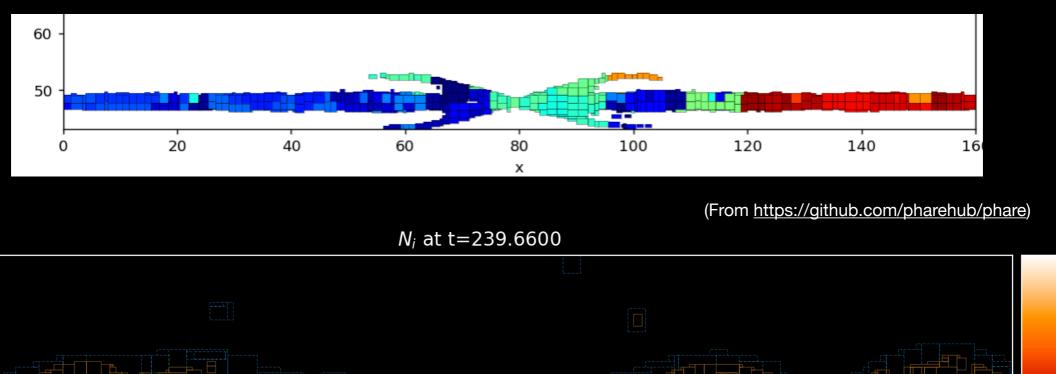
(From https://smileipic.github.io/Smilei/)

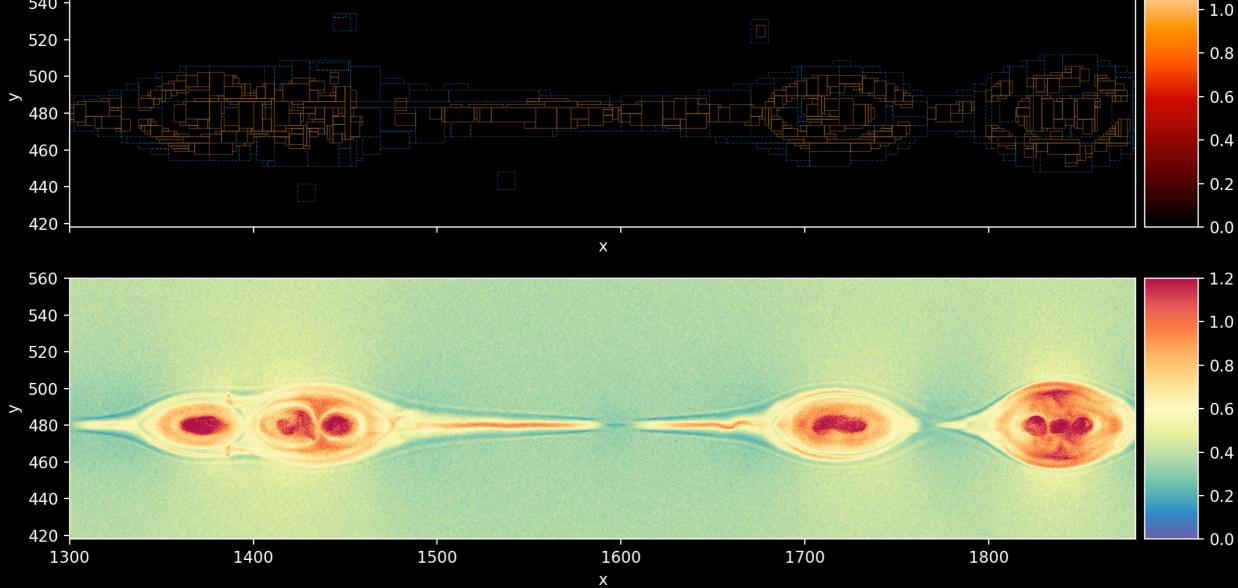
time

DYNAMIC LOAD BALANCING ADAPTIVE MESH REFINEMENT

560

540

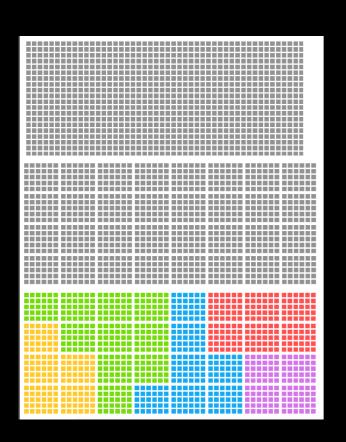


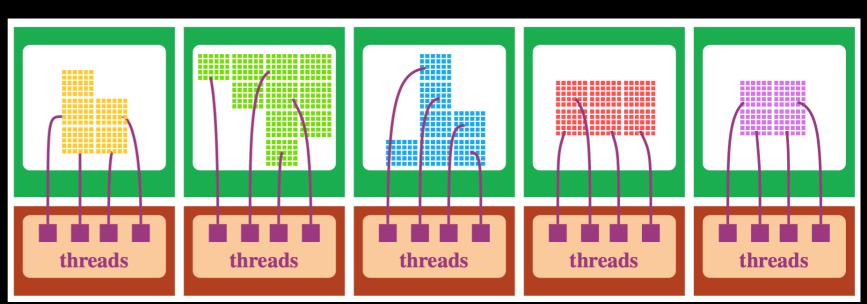


- 1.2

MPI + CPU THREADS

If you have many patches per process and you treat them sequentially you waste time Handle local patches with N threads





(From https://smileipic.github.io/Smilei/)

Load balance also applies to how work load is dispatched across threads...

You don't want 1 thread to do everything while the other wait...

