HPC MASTER CLASS

Numerical modeling of kinetic plasmas

Nicolas Aunai

nicolas.aunai@lpp.polytechnique.fr https://nicolasaunai.github.io/

HPC: High Performance Computing for Astrophysics

- 1- Numerical Modeling of Kinetic Plasmas
- 2- Numerical Modeling of Astrophysical Fluids
- 3- Machine Learning and GPU acceleration

Numerical Modeling of Kinetic Plasmas

- Astro-plasma-physics
- Numerical modeling for kinetic plasmas
- Modern HPC: C++ ecosystem (cmake, git, MPI, etc.)
- Hands-on: develop your own code

Evaluation?

- 2/3:
 - in-class participation & autonomy
 - Project: code quality and correctness
- 1/3:
 - Oral interview

Goals?

- Give you an overview of some basics
- Help you determine your taste for astro-HPC
- Have fun writing code for physics

Expect difficulties...

CLASS OUTLINE

SESSION 1: PLASMAS AND CODING

Most of the blah-blah...

SESSION 2: PARTICLE-IN-CELL 1

SESSION 3: PARTICLE-IN-CELL 2

SESSION 4: PARTICLE-IN-CELL 3

SESSION 5: PARALLEL PARTICLE-IN-CELL

Most of the hands-on

WARNINGS

WARNING

- We will do lots of coding that LLM tools may easily do for you, instead of you.
- There is no point in « success » without learning and understanding
- Best way to be sure you learnt and understood is to do it yourself
- Having good results at your M2 and failing in your PhD (or later) will get you nowhere nice
- So, I do not care if you use A.I but I care that you understand and learn
- Do what you want, you are responsible for your future

WARNING'

- I do not know everything, don't expect me to
- Look for answers yourself, autonomy is key to success

SESSION 1: PLASMAS AND CODING

PLASMA PHYSICS FORMALISMS

- It is an **overview** of the reasons
- You do not need to get all the details

- It is also a very interesting topic
- And what I do daily:)

THE EARTH MAGNETIC FIELD

- The Earth has a ~dipolar magnetic field
- It is generated by the **dynamo** effect
- It extends in space

- In vacuum the field extends to infinity
- But space is not empty... is it?

THE EARTH MAGNETOSPHERE

- The Sun blows radially a plasma wind: the solar wind
- The solar wind **compresses** the Earth magnetic field on the **dayside**
- And stretches it on the nightside

PLASMA UNIVERSE

- The Sun-Earth (or Star-planet) interaction is a complex field of physics
- Many interesting plasma processes occur from the Sun to the Planet:
 - Convection zone (dynamo),
 - coronal dynamics (jets, eruptions, coronal mass ejections, etc.)
 - turbulent transport in the solar wind,
 - dayside magnetosphere interaction (reconnection, instabilities, etc.)
 - Inner magnetospheric dynamics

Universality of Plasma Processes

- The Sun-Earth system is a unique laboratory to explore all these processes
- It is relatively easily accessible to in situ space measurements

Our magnetosphere

UNIVERSALITY OF PLASMA PROCESSES

- Past, Current and Future NASA Heliophysics Missions
- Well, before current's USA administration starts their journey back to middle age....

UNIVERSALITY OF PLASMA PROCESSES

- The Sun itself is a magnetized plasma object interacting with the interstellar plasma and magnetic field
- The **Heliosphere** is the Sun's magnetosphere.
- Much less accessible to in situ measurements: analogies to the Sun-Earth system very useful

Universality of plasma processes

IMF INTERACTION WITH THE MAGNETOSPHERE HPC Master Class

MAGNETIC RECONNECTION 101

CONSERVATION OF MAGNETIC FIELD LINE CONNECTIVITY

THE IMF AND SOLAR WIND FLOW AROUND THE MAGNETOSPHERE **HPC Master Class**

RECONNECTION IS A NON-IDEAL PLASMA PROCESS

strong gradient = non ideal processes

(we'll come back on them later)

RECONNECTION IS A NON-IDEAL PLASMA PROCESS

PLASMA TRANSPORT ACROSS MAGNETIC BOUNDARIES

Two important consequences

- New connectivity means particles can now go in regions previously inaccessible
- Localized microphysics processes can change the macroscale transport of plasma

ENERGY RELEASE

HEATING AND ACCELERATION OF THE PLASMA

- Particles are accelerated by magnetic
 « tension » kind of like Perls on a rubber band
- Reconnection accelerates particles
- Magnetic energy is transferred to kinetic and thermal plasma energy

RECONNECTION AT THE MAGNETOPAUSE Magnetopause reconnection Transport **HPC Master Class**

RECONNECTION IN THE MAGNETOTAIL Tail reconnection **Accélération HPC Master Class**

Universality of plasma processes: Magnetic Reconnection

TWO MAGNETIZED PLASMAS IN « CONTACT »

EJECTED FROM THE RECONNECTION SITE

EJECTED FROM THE RECONNECTION SITE

THIS DRIVES THE PULLING OF UPSTREAM FLUX AND PLASMA

WHICH IS RECONNECTED AND EJECTED ETC. ETC. AND THE PROCESS IS SELF MAINTAINED

MAGNETOHYDRODYNAMICS

- **Hydrodynamics**: only consider the evolution « macroscopic » quantities
 - Density, momentum, pressure, energy...
- Magneto: fluid is conducting electrical current and respond to magnetic forces

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla P + \mathbf{J} \times \mathbf{B}$$

$$\partial \mathbf{B}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$

- Mass conservation
- Momentum balance
- Resistive Induction Equation

Notes:

- Resistivity is linked to electron/ion collisions, leading to thermalization and dissipation
- Only two spatial scales here: system scale and resistive dissipation scale

MAGNETOHYDRODYNAMICS

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla P + \mathbf{J} \times \mathbf{B}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$

- Mass conservation
- Momentum balance
- Resistive Induction Equation

- Resistivity is linked to electron/ion collisions, leading to thermalization and dissipation
- Only two spatial scales here: system scale and resistive dissipation scale

FLOW IN MAGNETIC RECONNECTION

NEARLY COLLISIONLESS RESISTIVE RECONNECTION: TOO SLOW TO BE TRUE

Describing the evolution of the plasma as a single fluid does not hold at a certain scale...

lons are much heavier than electrons and have a much larger inertial length scale

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla P + \mathbf{J} \times \mathbf{B}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})$$

SINGLE FLUID FROZEN IN THE MAGNETIC FIELD

ONLY **ELECTRONS** ARE ASSUMED TO BE FROZEN IN B. ION INERTIA ALLOW THEM TO DETACH AT SMALL SCALES

Is it enough?

Fluid: macroscopic quantities are defined **locally**Not always true... actually almost always wrong!

SPACE PLASMAS ARE COLLISIONLESS

Variation Scales can be of the Order of Particle Larmor Scale

The bulk flow is « just » the local average of the particle velocities Particles do **not** follow the same path

Variation Scales can be of the Order of Particle Larmor Scale

The bulk flow is « just » the local average of the particle velocities Particles do **not** follow the same path

The bulk flow is « just » the local average of the particle velocities Particles do **not** follow the same path

VLASOV MODEL

Vlasov equation:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q}{m} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$

distribution functions of ions, electrons

$$f_i, f_e$$

Coupled to Maxwell Eq.

$$\frac{\partial E}{\partial t} = c^2 \left(\nabla \times \mathbf{B} - \mathbf{j} \right)$$
$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

Vlasov equation:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q}{m} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$

distribution functions of ions, electrons

$$f_i, f_e$$

Coupled to Maxwell Eq.

$$\begin{split} \frac{\partial E}{\partial t} &= c^2 \left(\nabla \times \mathbf{B} - \mathbf{j} \right) \\ \frac{\partial \mathbf{B}}{\partial t} &= -\nabla \times \mathbf{E} \end{split}$$

Vlasov equation:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q}{m} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$

distribution functions of ions, electrons

$$f_i, f_e$$

Coupled to Maxwell Eq.

$$\frac{\partial E}{\partial t} = c^2 \left(\nabla \times \mathbf{B} - \mathbf{j} \right)$$
$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

« moments » of the distribution function

$$n(\mathbf{r},t) = \int_{-\infty}^{\infty} f(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}$$

Vlasov equation:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q}{m} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$

distribution functions of ions, electrons

$$f_i, f_e$$

Coupled to Maxwell Eq.

$$\frac{\partial E}{\partial t} = c^2 \left(\nabla \times \mathbf{B} - \mathbf{j} \right)$$
$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

« moments » of the distribution function

$$n(\mathbf{r},t) = \int_{-\infty}^{\infty} f(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}$$

$$\mathbf{u}(\mathbf{r}, t) = \frac{1}{2} \int_{-\infty}^{\infty} \mathbf{v} f(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}$$

$$\mathbf{u}\left(\mathbf{r},t\right) = \frac{1}{n} \int_{-\infty}^{\infty} \mathbf{v} f\left(\mathbf{r},\mathbf{v},t\right) d\mathbf{v}$$

Vlasov equation:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q}{m} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$

distribution functions of ions, electrons

$$f_i, f_e$$

Coupled to Maxwell Eq.

$$\frac{\partial E}{\partial t} = c^2 \left(\nabla \times \mathbf{B} - \mathbf{j} \right)$$
$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

« moments » of the distribution function

$$n(\mathbf{r},t) = \int_{-\infty}^{\infty} f(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}$$

$$\mathbf{u}(\mathbf{r}, t) = \frac{1}{n} \int_{-\infty}^{\infty} \mathbf{v} f(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}$$

$$\mathbf{P}(\mathbf{r},t) = \int_{-\infty}^{\infty} (\mathbf{v} - \mathbf{u}) \otimes (\mathbf{v} - \mathbf{u}) f(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}$$

Vlasov equation:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q}{m} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$

distribution functions of ions, electrons

$$f_i, f_e$$

Coupled to Maxwell Eq.

$$\frac{\partial E}{\partial t} = c^2 \left(\nabla \times \mathbf{B} - \mathbf{j} \right)$$
$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

« moments » of the distribution function

$$n(\mathbf{r},t) = \int_{-\infty}^{\infty} f(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}$$

$$\mathbf{u}\left(\mathbf{r},t\right) = \frac{1}{n} \int_{-\infty}^{\infty} \mathbf{v} f\left(\mathbf{r},\mathbf{v},t\right) d\mathbf{v}$$

$$\mathbf{P}(\mathbf{r},t) = \int_{-\infty}^{\infty} (\mathbf{v} - \mathbf{u}) \otimes (\mathbf{v} - \mathbf{u}) f(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}$$

$$\mathbf{M}^{n}\left(\mathbf{r},t\right) = \int_{-\infty}^{\infty} \mathbf{v}^{n} f\left(\mathbf{r},\mathbf{v},t\right) d\mathbf{v}$$

Endless number of moments...

Vlasov equation:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q}{m} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$

distribution functions of ions, electrons

$$f_i, f_e$$

Coupled to Maxwell Eq.

$$\frac{\partial E}{\partial t} = c^2 \left(\nabla \times \mathbf{B} - \mathbf{j} \right)$$
$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

« moments » of the distribution function

$$n(\mathbf{r}, t) = \int_{-\infty}^{\infty} f(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}$$

$$\mathbf{u}(\mathbf{r}, t) = \frac{1}{n} \int_{-\infty}^{\infty} \mathbf{v} f(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}$$

$$\mathbf{P}(\mathbf{r}, t) = \int_{-\infty}^{\infty} (\mathbf{v} - \mathbf{u}) \otimes (\mathbf{v} - \mathbf{u}) f(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}$$

$$\mathbf{M}^{n}\left(\mathbf{r},t\right) = \int_{-\infty}^{\infty} \mathbf{v}^{n} f\left(\mathbf{r},\mathbf{v},t\right) d\mathbf{v}$$

Endless number of moments...

Density depends on mass flux

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla P + \mathbf{J} \times \mathbf{B}$$

momentum depends on pressure...

Fluid equations: truncated infinite system of moment equations.

VLASOV MODEL

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q}{m} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$

$$n \left(\mathbf{r}, t \right) = \int_{-\infty}^{\infty} f \left(\mathbf{r}, \mathbf{v}, t \right) d\mathbf{v}$$

$$\mathbf{u} \left(\mathbf{r}, t \right) = \frac{1}{n} \int_{-\infty}^{\infty} \mathbf{v} f \left(\mathbf{r}, \mathbf{v}, t \right) d\mathbf{v}$$

$$\mathbf{j} = en \left(\mathbf{v} - \mathbf{v}_{\mathbf{e}} \right)$$

$$\frac{\partial E}{\partial t} = c^2 \left(\nabla \times \mathbf{B} - \mathbf{j} \right)$$

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

Evolve in time for all populations

Integrate in velocity space to get ion and electron densities and charge flux

Calculate the electric current

Evolve Maxwell equations

GLOBAL VLASOV IS INSANELY COMPUTATIONALLY HEAVY

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q}{m} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$

$$n \left(\mathbf{r}, t \right) = \int_{-\infty}^{\infty} f \left(\mathbf{r}, \mathbf{v}, t \right) d\mathbf{v}$$

$$\mathbf{u} \left(\mathbf{r}, t \right) = \frac{1}{n} \int_{-\infty}^{\infty} \mathbf{v} f \left(\mathbf{r}, \mathbf{v}, t \right) d\mathbf{v}$$

$$\mathbf{j} = en \left(\mathbf{v} - \mathbf{v_e} \right)$$

$$\frac{\partial E}{\partial t} = c^2 \left(\nabla \times \mathbf{B} - \mathbf{j} \right)$$

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

$$f = f(\mathbf{r}, \mathbf{v}, t)$$
 $n_x n_y n_z n_{vx} n_{vy} n_{vz} n_t$
Spatial Velocity Temporal domain domain
$$\Delta t \sim \Omega_{ce}^{-1} \approx 0.1 \mathrm{ms}, T \sim 1 \mathrm{hour} \rightarrow n_t \sim 4e7$$

$$\Delta x \sim \rho_e \approx 1 \mathrm{km}, L \sim 50 \mathrm{Re} \rightarrow n_x \sim 2e5$$

$$\Delta v \sim 0.01 V_A \approx 5 \mathrm{km/s}, V \sim 5 V_A \rightarrow n_v \sim 5e2$$

In a thousand years maybe...

Fully Kinetic
fully kinetic physics, but small
domains, short durations

$$\omega_{ci}^{-1} \
ho_i$$

include ion kinetics but a fluid electron model

HYBRID KINETIC FORMALISM

Faraday's law

Ampere's law

Ion Vlasov eq.

Ion moments

Quasi-neutrality

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E},$$

$$\mu_0 \mathbf{j} = \nabla \times \mathbf{B},$$

$$\frac{\partial f_p}{\partial t} = -\mathbf{v} \cdot \nabla f_p - \frac{\mathbf{E} + \mathbf{v} \times \mathbf{B}}{m_p} \cdot \nabla_{\mathbf{v}} f_p,$$

$$n_i = \sum_p \int f_p(\mathbf{r}, \mathbf{v}) d^3 v,$$

$$\mathbf{v}_i = \frac{1}{n_i} \sum_p \int \mathbf{v} f_p(\mathbf{r}, \mathbf{v}) d^3 v,$$

$$n_i = n_e = n,$$

$$\mathbf{v}_e = \mathbf{v}_i - \frac{\mathbf{j}}{ne},$$

Electron momentum eq.

$$m_e n_e \frac{d\mathbf{v_e}}{dt} = -\nabla \cdot P_e - en_e \left(\mathbf{E} + \mathbf{v_e} \times \mathbf{B}\right)$$

HYBRID KINETIC FORMALISM

Faraday	/ ' S	law
---------	--------------	-----

Ampere's law

Ion Vlasov eq.

lon moments

Quasi-neutrality

Generalized Ohm's law

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E},$$

$$\mu_0 \mathbf{j} = \nabla \times \mathbf{B},$$

$$\frac{\partial f_p}{\partial t} = -\mathbf{v} \cdot \nabla f_p - \frac{\mathbf{E} + \mathbf{v} \times \mathbf{B}}{m_p} \cdot \nabla_{\mathbf{v}} f_p,$$

$$n_i = \sum_p \int f_p(\mathbf{r}, \mathbf{v}) d^3v,$$

$$\mathbf{v}_i = \frac{1}{n_i} \sum_p \int \mathbf{v} f_p(\mathbf{r}, \mathbf{v}) d^3 v,$$

$$n_i = n_e = n,$$

$$\mathbf{v}_e = \mathbf{v}_i - \frac{\mathbf{j}}{ne},$$

$$\mathbf{E} = -\mathbf{v}_e \times \mathbf{B} - \frac{1}{en} \nabla \cdot \mathbf{P}_e - \frac{m_e}{e} \frac{d\mathbf{v}_e}{dt}.$$

Kinetic for ions, fluid for electrons.

This is what you will implement :-)

3 STEPS ITERATED CRANK NICHOLSON

And you will implement it this way ;-)

Prediction

$$\begin{split} \mathbf{B}_{p1}^{n+1} &= \mathbf{B}^{n} - \Delta t \nabla \times \mathbf{E}^{n} \\ \mathbf{E}_{p1}^{n+1} &= -\mathbf{u}^{n} \times \mathbf{B}_{p1}^{n+1} + \frac{\nabla \times \mathbf{B}_{p1}^{n+1}}{N^{n}} - \frac{\nabla \cdot \mathbf{P_{e}}}{N^{n}} + \eta \nabla \times \mathbf{B}_{p1}^{n+1} - \nu \nabla^{2} \nabla \times \mathbf{B}_{\mathbf{p}1}^{\mathbf{n}+1} \\ (\mathbf{E}, \mathbf{B})^{n+1/2} &= < (\mathbf{E}, \mathbf{B}) >_{n}^{n+1} \\ \mathbf{r}_{p1}^{n+1/2} &= \mathbf{r}^{n} + \Delta t / 2 \mathbf{v}^{n} \\ \mathbf{E}, \mathbf{B} \left(\mathbf{r_{p1}^{n+1/2}} \right) &= \sum_{ijk} \left(\mathbf{E}, \mathbf{B}_{ijk} \right) W \left(|\mathbf{r}_{ijk} - \mathbf{r_{p1}^{n+1/2}}| \right) \\ m_{i} \frac{d\mathbf{v}_{p1}^{n+1}}{dt} &= e \left(\mathbf{v}^{n} \times + \mathbf{B}^{n+1/2} + \mathbf{E}^{n+1/2} \right) \\ N^{n+1} &= \sum_{n} w_{p} \mathbf{v}_{p1}^{n+1} W \left(|\mathbf{r}_{ijk} - \mathbf{r_{p1}^{n+1}}| \right) \qquad u^{n+1} &= \sum_{p} w_{p} \mathbf{v}_{p1}^{n+1} W \left(|\mathbf{r}_{ijk} - \mathbf{r_{p1}^{n+1}}| \right) \end{split}$$

Prediction

$$\begin{split} \mathbf{B}_{p2}^{n+1} &= \mathbf{B}^{n} - \Delta t \nabla \times \mathbf{E}^{n+1/2} \\ \mathbf{E}_{p2}^{n+1} &= -\mathbf{u}^{n+1} \times \mathbf{B}_{p2}^{n+1} + \frac{\nabla \times \mathbf{B}_{p2}^{n+1}}{N^{n+1}} - \frac{\nabla \cdot \mathbf{P_e}}{N^{n+1}} + \eta \nabla \times \mathbf{B}_{p2}^{n+1} - \nu \nabla^2 \nabla \times \mathbf{B}_{\mathbf{p2}}^{\mathbf{n}+1} \\ \mathbf{r}_{p2}^{n+1/2} &= \mathbf{r}^{n} + \Delta t / 2 \mathbf{v}^{n} \\ (\mathbf{E}, \mathbf{B})^{n+1/2} &= < (\mathbf{E}, \mathbf{B}) >_{n}^{n+1} \\ m_i \frac{d \mathbf{v}_{p2}^{n+1}}{dt} &= e \left(\mathbf{v}^{n} \times + \mathbf{B}^{n+1/2} + \mathbf{E}^{n+1/2} \right) \\ N^{n+1} &= \sum_{p} w_p \mathbf{v}_{p1}^{n+1} W \left(|\mathbf{r}_{ijk} - \mathbf{r}_{p1}^{n+1}| \right) \qquad u^{n+1} &= \sum_{p} w_p \mathbf{v}_{p1}^{n+1} W \left(|\mathbf{r}_{ijk} - \mathbf{r}_{p1}^{n+1}| \right) \end{split}$$

Correction

 $t + \Delta t$

$$\mathbf{B}^{n+1} = \mathbf{B}^{n} - \Delta t \nabla \times \mathbf{E}^{n+1/2}$$

$$\mathbf{E}^{n+1} = -\mathbf{u}^{n+1} \times \mathbf{B}^{n+1} + \frac{\nabla \times \mathbf{B}^{n+1}}{N^{n+1}} - \frac{\nabla \cdot \mathbf{P_e}}{N^{n+1}} + \eta \nabla \times \mathbf{B}^{n+1} - \nu \nabla^2 \nabla \times \mathbf{B}^{n+1}$$

Yee grid

YOUR CODING ENVIRONMENT

Tower1234

Instance	IP Address
c4-9	157.136.253.198
c4-8	157.136.252.166
с4-7	157.136.252.152
c4-6	157.136.250.149
c4-5	157.136.254.143
с4-4	157.136.254.44
c4-3	157.136.252.31
c4-11	157.136.251.132
c4-10	157.136.255.48
c4-2	157.136.255.161
c4-1	157.136.253.140

SOME ELEMENTS FOR HIGH PERFORMANCE

SUPERCOMPUTER ARCHITECTURE

« Nodes » are linked via fast network connections Each node has its own memory

Each node has several « cores » sharing the same memory

MODERN (HETEROGENEOUS) SUPERCOMPUTER ARCHITECTURE

« Nodes » are linked via fast network connections Each node has its own memory

Each node has several « cores » sharing the same memory

Each node may have one or several GPUs

SUPERCOMPUTER @ GENCI

GENCI: Grand Equipement National Calcul Intensif

- https://www.genci.fr/centre-informatique-national-de-lenseignement-superieur-cines
- https://www.genci.fr/institut-du-developpement-et-des-ressources-en-informatique-scientifique-idris
- https://www.genci.fr/tres-grand-centre-de-calcul-du-cea-tgcc

MULTICORE PROCESSOR MEMORY

Main Memory (RAM)

- Loading data and instruction from memory is expensive
- Memory is decomposed into a « cache hierarchy »

In memory

CPU

MULTICORE PROCESSOR MEMORY

- Cache is not a contiguous block of memory
- It is made of a set of cache lines of a fixed size
- Data is fetched for an entire cache line
- Contiguous memory populate cache line
- « oldest » (usage) cache lines are replaced first

Both data and instructions are pre-fetched into the cache to minimize the probability of cache misses

MULTICORE PROCESSOR MEMORY

```
for (int i=; i < 4; ++i)
{
    for (int j=0; j < 5; ++j)
    {
        | field[i][j] = ...;
    }
}</pre>
```

```
for (int j=; j < 5; ++j)
{
    for (int i=0; i < 4; ++i)
    {
        field[i][j] = ...;
    }
}</pre>
```

```
i=0 i=1 i=2 i=3
j=0
             10
                 15
         5
j=1
             11
                 16
         6
             12
                 17
j=2
     3
             13
                 18
         8
j=3
         9
             14
                 19
j=4
```


Next index probably in cache

Next index probably not in cache...

- « Cache hit » : required data is in cache, low latency
- « Cache miss »: data not in cache... you wait

- Be careful of how you traverse your data!
- Worst is probably random accesses....
- Beware spatial and temporal coherence

Memory bound programs: run time dominated by memory accesses. Huge arrays and little operations per element CPU bound programs: huge numbers of heavy computations for little number of elements

CPU PIPELINE

Handling an instruction requires several steps that the CPU manages in a « pipeline »

« branching » potentially kills the flow in the pipeline and wastes cycles.

CPU PIPELINE

« branching » potentially kills the flow in the pipeline and wastes cycles.

Avoid conditions and virtual functions in « heavy » loops

- Out-of-order pipelines: CPUs are « smart » enough to handle independent instructions to fill the pipeline
- Superscalar CPUs: instructions are dispatched to several execution units working in parallel
- Branch prediction: the CPU tries its best to identify patterns and predict the next instructions

Compilers are very smart. Gcc is ~15 million lines of codes...

GENERAL OPTIMIZATION STRATEGY

Premature optimization is the root of all evil... but don't be dumb!

- Make it work
- Make it clean
- Make it fast

Measure measure measure.....

Very hard to predict what's taking time...

- Implement your own timer
- Use tools
 - perf: https://perfwiki.github.io/main/
 - gprof: https://hpc-wiki.info/hpc/Gprof_Tutorial
 - vtune (intel)
 - etc.

https://coliru.stacked-crooked.com/a/357dc3307f794823

```
template<typename Fn>
auto measure(Fn fn)
    std::vector<double> durations;
    int const repeatTimes = 100;
    auto ret = 0;
    for (int step = 0; step < repeatTimes; ++step)</pre>
        std::chrono::high_resolution_clock::time_point t1;
        t1 = std::chrono::high_resolution_clock::now();
        ret = fn();
        std::chrono::high_resolution_clock::time_point t2;
        t2 = std::chrono::high_resolution_clock::now();
        auto duration = std::chrono::duration_cast<std::chrono::nanoseconds>(t2 - t1
        durations.push_back(duration);
    std::cout << "use the value : " << ret << "\n";
    return std::accumulate(std::begin(durations), std::end(durations),
0.0)/repeatTimes;
```

- 1. Choose the « best » algorithm
- 2. Make it faster
- 3. Parallelization

CODE IS FOR HUMANS

All of your projects will always have at least 2 developers You, and you 6 months later... help yourself!

SOME REFERENCES

Naming Things Correctly

- Naming things is hard, it takes time, it's normal, rush now: lose time later
- Choose descriptive and unambiguous names
- Follow standard conventions
- Use pronounceable names (read your code like English)
- Use searchable names
- Replace magic numbers with named constants
- Don't append prefixes or type information

NAMING THINGS CORRECTLY

- Naming things is hard, it takes time, it's normal, rush now: lose time later
- Functions should have no arguments, or one at most. Two is one too many probably. 3 is code smell

Say you want a piece of code that adjusts the time step if the CFL condition is violated

```
if (0.9*v/(dx/dt) < 1)
if (!stability_criterion(v, dt, dx))
if (!isStable(v, dt, dx))
if (!simulation.isStable(solution_state))
```

What the f**** does it mean?

- Better but does not read well...
- « not stability criterion »? What does it mean?
- dx : limited to 1D?
- Should we know at this level that we need v, dt and dx?
- Reads better
- Same comments as above for the rest

• Best?

You start your car to go somewhere:

- Open the door
 - Door unlocking mechanism...
- Sit down
- Push start (turn key?)
- Release brakes
 - brakes move away from disks...
- Push gas pedal
 - Gas flow into engine
 - Gas mixes with air in combustion chamber
- Drive

- Open the door
- Sit down
- Push start (turn key?)
- Release break
- Push gas pedal and drive

Only write in the current function what is relevant to the current context

You have a grid and want, somewhere, to get the coordinates of each nodes

What do you do?

Typically, you write this function:

```
auto get_coordinates_from_grid(std::vector<double> const& grid, int i, int j) / {/// }
```

What's wrong with it?

You have a grid and want, somewhere, to get the coordinates of each nodes

```
auto get_coordinates_from_grid(std::vector<double> const& grid, int i, int j) / { /// / } /// }
```

Call site:

```
for (int i = 0; i < grid_size; ++i)

for (int j = 0; j < grid_size; ++j)

auto coords = get_coordinates_from_grid(my_grid, i, j);
}
}</pre>
```

- The function leaks that the grid is a vector of double, and it is 2d
- Call site needs to handle the 2Dness, the grid size, and (i,j)
- « grid » is needlessly repeated
- « get » is useless, we see we get something from coords =

Do NOT write low level first. Start high level and go down.

Call site:

```
std::size_t nx = 10, ny = 20;;
Grid my_grid{nx, ny};;
for (auto const& idx: my_grid)
{
    auto coords = my_grid.coords_at(idx);
}
```

- 'coords_at': enough, 'idx' complements
- Who cares how Grid works internally here?
- Easily iterate over a grid with range-based loop

Writing the high level first:

- fixes the interface of objects
- helps respecting the right level of abstraction
- Simpler code that reads more easily, less bugs, better extensibility, etc.
- More difficult to get overwhelmed by details...

t Prediction

$$\begin{split} \mathbf{B}_{p1}^{n+1} &= \mathbf{B}^{n} - \Delta t \nabla \times \mathbf{E}^{n} \\ \mathbf{E}_{p1}^{n+1} &= -\mathbf{u}^{n} \times \mathbf{B}_{p1}^{n+1} + \frac{\nabla \times \mathbf{B}_{p1}^{n+1}}{N^{n}} - \frac{\nabla \cdot \mathbf{P_{e}}}{N^{n}} + \eta \nabla \times \mathbf{B}_{p1}^{n+1} - \nu \nabla^{2} \nabla \times \mathbf{B}_{\mathbf{p}1}^{\mathbf{n}+1} \\ &(\mathbf{E}, \mathbf{B})^{n+1/2} = < (\mathbf{E}, \mathbf{B}) >_{n}^{n+1} \\ \mathbf{r}_{p1}^{n+1/2} &= \mathbf{r}^{n} + \Delta t / 2 \mathbf{v}^{n} \\ \mathbf{E}, \mathbf{B} \left(\mathbf{r_{p1}^{n+1/2}} \right) &= \sum_{ijk} \left(\mathbf{E}, \mathbf{B}_{ijk} \right) W \left(|\mathbf{r}_{ijk} - \mathbf{r_{p1}^{n+1/2}}| \right) \\ m_{i} \frac{d\mathbf{v}_{p1}^{n+1}}{dt} &= e \left(\mathbf{v}^{n} \times + \mathbf{B}^{n+1/2} + \mathbf{E}^{n+1/2} \right) \\ N^{n+1} &= \sum_{p} w_{p} \mathbf{v}_{p1}^{n+1} W \left(|\mathbf{r}_{ijk} - \mathbf{r_{p1}^{n+1}}| \right) \qquad u^{n+1} &= \sum_{p} w_{p} \mathbf{v}_{p1}^{n+1} W \left(|\mathbf{r}_{ijk} - \mathbf{r_{p1}^{n+1}}| \right) \end{split}$$

Prediction

$$\begin{split} \mathbf{B}_{p2}^{n+1} &= \mathbf{B}^{n} - \Delta t \nabla \times \mathbf{E}^{n+1/2} \\ \mathbf{E}_{p2}^{n+1} &= -\mathbf{u}^{n+1} \times \mathbf{B}_{p2}^{n+1} + \frac{\nabla \times \mathbf{B}_{p2}^{n+1}}{N^{n+1}} - \frac{\nabla \cdot \mathbf{P_e}}{N^{n+1}} + \eta \nabla \times \mathbf{B}_{p2}^{n+1} - \nu \nabla^2 \nabla \times \mathbf{B}_{\mathbf{p2}}^{\mathbf{n}+1} \\ \mathbf{r}_{p2}^{n+1/2} &= \mathbf{r}^{n} + \Delta t / 2 \mathbf{v}^{n} \\ (\mathbf{E}, \mathbf{B})^{n+1/2} &= < (\mathbf{E}, \mathbf{B}) >_{n}^{n+1} \\ m_i \frac{d \mathbf{v}_{p2}^{n+1}}{dt} &= e \left(\mathbf{v}^{n} \times + \mathbf{B}^{n+1/2} + \mathbf{E}^{n+1/2} \right) \\ N^{n+1} &= \sum_{p} w_p \mathbf{v}_{p1}^{n+1} W \left(|\mathbf{r}_{ijk} - \mathbf{r}_{p1}^{n+1}| \right) \qquad u^{n+1} &= \sum_{p} w_p \mathbf{v}_{p1}^{n+1} W \left(|\mathbf{r}_{ijk} - \mathbf{r}_{p1}^{n+1}| \right) \end{split}$$

Correction

$$\mathbf{B}^{n+1} = \mathbf{B}^{n} - \Delta t \nabla \times \mathbf{E}^{n+1/2}$$

$$\mathbf{E}^{n+1} = -\mathbf{u}^{n+1} \times \mathbf{B}^{n+1} + \frac{\nabla \times \mathbf{B}^{n+1}}{N^{n+1}} - \frac{\nabla \cdot \mathbf{P_e}}{N^{n+1}} + \eta \nabla \times \mathbf{B}^{n+1} - \nu \nabla^2 \nabla \times \mathbf{B}^{n+1}$$

Start writing this

```
while( time < final_time )
{
    predictor(state);
    predictor(state);
    corrector(state);
    diagnostics.dump(time);
    time += dt;
}</pre>
Then this
```

```
void predictor(State& state)
{
    faraday(state.B, state.E, Bpred);
    ampere(Bpred, state.J);
    ohm(Bpred, state.J, state.N, state.V, Epred);
    average(state.E, Epred, Eavg);
    average(state.B, Bpred, Bavg);
}
```

Only then this

```
void faraday(Vector const& B, Vector const& E, Vector& Bnew)
{
    // Faraday's law: dB/dt = - curl(E)
    Bnew = B - dt * curl(E);
}
```


FUNCTIONS

- 1. Small (1-20 lines max)
- 2. Do one thing (what its name says)
- 3. Use descriptive names (changes something? Getter? Runs something?...)
- 4. Prefer fewer arguments (0 best, 1 ok, 2 suspicious, 3 smells...)
- 5. Have no side effects

MY CODE IS CLEAN, I WRITE COMMENTS...

What are the problem with comments?

- 1. They're annoying to write
- 2. No one really reads them
- 3. They can unsync with code and be misleading when we do read them... so we don't read them...
- 4. They very often hide bad code that should be changed...

Comments are often procrastination to fix code

- 1. A block of code with a comment: is a FUNCTION
- 2. Write expressive code, not comments
- 3. Don't be redundant : « loops over elements... »

When to write comments?

- 1. Use as explanation of intent: why done this way? What assumptions?
- 2. Talks to colleagues or later you.

MY CODE IS CLEAN, I WRITE COMMENTS...

Bad comments

```
// loop over particles
for (auto const& particle : particles)
{
}

// return the size of the particle array
int particleArraySize() const
{
    return array_.size();
}
```

Useful comments

```
template<typename ResourcesView>
NO_DISCARD auto restart_patch_data_ids(ResourcesView const& view) const
{
    // true for now with https://github.com/PHAREHUB/PHARE/issues/664
    constexpr bool ALL_IDS = true;

std::vector<int> ids;
```

```
static void postprocessBy2d(auto& bx, auto& by, auto const& layout,
                            core::Point<int, dimension> idx)
    auto locIdx = layout.AMRToLocal(idx);
                = locIdx[dirX];
   auto ix
                = locIdx[dirY];
   auto iy
    // here with offset = 0 \rightarrow -- -- <- or here with offset = 1
    if (idx[dirY] % 2 != 0)
        int xoffset = (idx[dirX] % 2 == 0) ? 0 : 1;
        int yoffset = 1;
       by(ix, iy) = 0.5 * (by(ix, iy - 1) + by(ix, iy + 1))
                     + 0.25
                           * (bx(p_minus(ix, xoffset), d_minus(iy, yoffset))
                              - bx(p_plus(ix, xoffset), d_minus(iy, yoffset))
                              - bx(p_minus(ix, xoffset), d_plus(iy, yoffset))
                              + bx(p_plus(ix, xoffset), d_plus(iy, yoffset)));
```


WRITING MAKEFILES IS DIFFICULT

Makefile:

- compiler command for each compilation unit (sources, headers)
- Link command for assemble compiled units into targets (libraries, executables)

Writing makefiles can become very complicated:

- When creating multiple targets
- Each target has different dependencies
- Finding dependencies and dealing with their versions
- Build portability across different platforms

CMAKE WRITES THE **M**AKEFILE FOR YOU

CMakeLists.txt: high level description of each target and their dependencies Make reads CMakeLists.txt files and generate the Makefile

- Made by 'kitware', open source
- Available at https://cmake.org/
- Packaged on Linux/Mac (e.g. homebrew)
- Tutorial: https://cmake.org/cmake/help/latest/guide/tutorial/index.html

People love to hate CMake, but it is widely used...

MESON: a good alternative https://mesonbuild.com

INTERPRETED VS COMPILED LANGUAGE

Interpreting code is slower than directly running binary CPU instructions Compiled code is more optimized Interpreted languages are more flexible

HIGH PERFORMANCE COMPUTING

HPC?

- The goal of HPC is to execute a program « as fast as possible »
- HPC codes are thus written mostly with compiled languages
- « modern » codes mix compiled languages for (heavy) computational components and interpreted code for higher level or user interface components.

Main HPC compiled languages

- FORTRAN (FORmula TRANslation): 1957 and many versions since, latest is Fortran 2023
 - « easy » to write code that « looks like the math »
- C: invented in 1972 general **low level** (fast) programming language
- C++: invented in 1985 low level of C with easier high level abstraction

Main HPC interpreted languages

- Python: invented in 1991, really took off for science in mid 2000s (Numpy 2006, etc.)
- Huge ecosystem, easy to write

EVOLUTION OF HPC CODES

< 2000-2010

> 2000-2010

Soft. Engineering

VS

numerical

- Code is mostly solving equations
- Simple supercomputer architectures
- 1 dev, 1 user, usually same person (no versatility, no ergonomic interface, etc.)

- Peta (1e15) /Exascale (1e18) scalability
- Complex data structures
- Complex architectures (multi-GPU / CPUs etc.)
- Versatility, user communities

WHY C++?

We (the HPC community) are outnumbered by industry people

- We run on computers made for games (or now AI)
- Programming languages (and interpreters/compilers) are driven by industry needs
- Third party libraries are mostly developed and maintained for industry needs
- Need to hire people with engineering and hardware/low-level skills: those people typically are in the industry

What does the industry?

(TIOBE index)

Jul 2025	Jul 2024	Change	Programming Language		Ratings	Change
1	1			Python	26.98%	+10.85%
2	2		©	C++	9.80%	-0.53%
3	3		9	С	9.65%	+0.16%
4	4		4	Java	8.76%	+0.17%
5	5		3	C#	4.87%	-1.85%
6	6		JS	JavaScript	3.36%	-0.43%
7	7		-GO	Go	2.04%	-0.14%
8	8		VB	Visual Basic	1.94%	-0.13%
9	24	*	Ada	Ada	1.77%	+0.99%
10	11	^	6	Delphi/Object Pascal	1.77%	-0.12%
11	30	*		Perl	1.76%	+1.10%
12	9	~	B	Fortran	1.67%	-0.38%

WHY C++?

Performance

Ergonomy

C++

Your bible: https://cppreference.com/

Online compilers (for quick tests): https://coliru.stacked-crooked.com/ (quick & dirty cpp tests)

https://godbolt.org/ (See assembly etc.)

Some references:

https://nicolasaunai.github.io/teaching/M2IRT-HPC-Master-class

C++

```
Function name
  Headers: definitions of
  classes, functions, etc.
  that are used after
                                                                             argument
                                  #include <iostream>
                                  #include <string>
                                  int my_function(std::string word)
                                      return word.size();
                              10
Mandatory main
                              11 int main()
function (point of entry)
                              12 - {
                                      std::string hello = "hello world";
                              13
                              14
                                      std::cout << hello <<" is "<< my_function(hello) << " letters long\n";
                              15
                              16
                                  }
                              17
```

Basics: https://coliru.stacked-crooked.com/a/d4a3e9d19986f3e7

C++ IN A NUTSHELL

- Data types
- Pointers & references: https://coliru.stacked-crooked.com/a/4c8c292d1297b138
- Basics https://coliru.stacked-crooked.com/a/c99925c0e0f312dc:
 - Main function,
 - Functions, return type, arguments, default arguments, lambda functions
- Structures & classes: https://coliru.stacked-crooked.com/a/8d89c5d1ae4c2f57
 - public, private,
 - Constructors, destructors, methods, operators
 - Private inheritance: sharing code
 - Public inheritance, polymorphism, Liskov principle, design patterns
- Containers (array, vector...): https://coliru.stacked-crooked.com/a/99792e2d07efd28b
- Smart pointers & Ownership
- STL (transform, random, math, etc.)
- Templates, variadic templates
- Exceptions
- Const, constexpr
- namespace

SOME GENERAL ADVICES...

- const by default, and remove it if required : help the compiler
- constexpr, don't make at runtime if you can make it at build time
- Avoid virtual calls or if at low level
- Keep memory allocation out of your heavy loops
- **Beware copies**... start by deleting copy constructors...

HANDS ON!

HPC Master Class

SOME BASIC CMAKE PROJECT

git clone https://github.com/nicolasaunai/mini cmake project

Write the CMakeLists.txt file to generate an executable for this cpp code

SOME BASIC CMAKE PROJECT

git clone https://github.com/nicolasaunai/h5example

Modify the CMakeLists.txt to get the HighFive dependency

FINITE DIFFERENCE MINI-PROJECT

 Demonstrate these finite difference formulae for the first order derivative are respectively first and second order accurate

$$\frac{f_{i+1} - f_i}{\Delta x} = f'(x)$$

$$\frac{f_{i+1} - f_{i-1}}{2\Delta x} = f'(x)$$

Write a CMake C++ program that demonstrates it

