HPC MASTER CLASS
Numerical modeling of kinetic plasmas

Nicolas Aunai

nicolas.aunai@Ipp.polytechnique.fr
https://nicolasaunai.github.io/

O©LLP

Laboratory of Plasma Physics

mailto:nicolas.aunai@lpp.polytechnique.fr
https://nicolasaunai.github.io/

HPC: High Performance Computing for Astrophysics

1- Numerical Modeling of Kinetic Plasmas
2- Numerical Modeling of Astrophysical Fluids

3- Machine Learning and GPU acceleration

Numerical Modeling of Kinetic Plasmas

 Astro-plasma-physics

- Numerical modeling for kinetic plasmas

- Modern HPC: C++ ecosystem (cmake, git, MPI, etc.)
- Hands-on: develop your own code

Evaluation?

« 2/3:

* in-class participation & autonomy

* Project : code quality and correctness
« 1/3:

* Oral interview
Goals?

 Give you an overview of some basics
» Help you determine your taste for astro-HPC
- Have fun writing code for physics

4]

Expect difficulties...

HPC Master Class

CLASS OUTLINE

SESSION 1: PLASMAS AND CODING Most of the blah-blah...
SESSION 2: PARTICLE-IN-CELL 1
SESSION 3: PARTICLE-IN-CELL 2

Most of the hands-on

SESSION 4: PARTICLE-IN-CELL 3

SESSION 5: PARALLEL PARTICLE-IN-CELL

HPC Master Class

WARNINGS

WARNING

We will do lots of coding that LLM tools may
easily do for you, instead of you.

There is no point in « success » without
learning and understanding

Best way to be sure you learnt and understood
is to do it yourself

Having good results at your M2 and failing in
your PhD (or later) will get you nowhere nice

So, | do not care if you use A.l but | care that
you understand and learn

Do what you want, you are responsible for your
future

WARNING’

| do not know everything, don’t expect me to

Look for answers yourself, autonomy is key to
success

HPC Master Class

Earth to Scale

* This part of the class is so you know wh
we care about numerical kinetic modeling

* Itis an overview of the reasons
* You do not need to get all the details

* Itis also a very interesting topic
 And what | do daily :)

The Earth has a ~dipolar magnetic field

It is generated by the dynamo effect
It extends in space

In vacuum the field extends to infinity

But space is not empty... is it?

DAYSIDE NIGHTSIDE
(Magnetotail)

* The Sun blows radially a plasma wind: the solar wind
* The solar wind compresses the Earth magnetic field on the dayside
* And stretches it on the nightside

* The Sun-Earth (or Star-planet) interaction is a complex field of physics

* Many interesting plasma processes occur from the Sun to the Planet:

e Convection zone (dynamo),

coronal dynamics (jets, eruptions, coronal mass ejections, etc.)
turbulent transport in the solar wind,

dayside magnetosphere interaction (reconnection, instabilities, etc.)
Inner magnetospheric dynamics

réSPR—I (LX+LW): 2024—12-25 10:05°UT

* The Sun-Earth system is a unique laboratory to explore all these processes
* It is relatively easily accessible to in situ space measurements

Our

)
NN
NN
NN

Wﬁ — - 00 — i
\\\\M - . — ——
Q Q.:’."‘,!I\ ‘ — .

s — —— —— ;

I
it
#i‘i“r‘

/ ' — IBEX

_Heiophysics |

EuvsT
-
o ‘ A <2§f.’3§3)

AWE (ISS)

YEN \
M '/(: THEMIS-

\' / } 7 ARTEMIS (2)

HelioSwarm (9)

TRACERS ()

. Parker Solar,

Prcibo ,,/// -
e S THEMIS(3), ¢
. A | / _‘/'}
STEREO [N e

L)
AN
e
&

e Past, Current and Future NASA Heliophysics Missions
* Well, before current’s USA administration starts their journey back to middle age....

UNIVERSALITY OF PLASMA PROCESSES

* The Sun itself is a magnetized plasma object interacting with the interstellar plasma and magnetic field
* The Heliosphere is the Sun’s magnetosphere.
* Much less accessible to in situ measurements: analogies to the Sun-Earth system very useful

Heliosphere

lll

hock " - :
+—Heliosheath -
//%\:oyageﬂ ;
| ig :
T +—Tétmination Shock
Magerz

| { = Our

\HeliW ~ fi— P T
™ Heliosphere magnetospnere

He T
sy
.

e I3

HPC Master Class @HLPP

UNIVERSALITY OF PLASMA PROCESSES

e Heliosphere,

, vy Voyager 1
gk greneeeas el

’
v
'

.. E .) g E
§ """"" g <—T'énnmggion Shock :

. ‘ 5..:,.
\ Heliopause 0 ur
b e magnetosphere

 Magnetized plasmas are ubiquitous

» Studying local processes give clues of
what is going on up there

- :

* Pulling the green line against
the red one will distort them

* But they will keep their
connectivity

strong gradient = non

Ideal processes
(we’ll come back on them later)

. Plasma 1
‘
Plasma 2
fleld line

D B T T

connectivity broken

Magnetic
Re-connection

Two Important conseguences

* New connectivity means particles can now go
in regions previously inaccessible

* Localized microphysics processes can
change the macroscale transport of plasma

\
\
* The previous « ideal » evolution led to energy

accumulation in the system

* The sudden change of topology allows for a
rapid release of that energy

Particles are accelerated by magnetic
« tension » kind of like Perls on a rubber band

Reconnection accelerates particles

Magnetic energy is transferred to kinetic
and thermal plasma energy

RECONNECTION AT THE MAGNETOPAUSE

Magnetopause
reconnectlon

HPC Master Class @LPP

NIVERSALITY OF PLASMA PROCESSES: MAGNETIC RECONNECTION

Sun-Earth

Aurorae
on other
planets

TWO MAGNETIZED PLASMAS IN « CONTACT »

Plasma 2

i
A

Plasma 1

|\
/

CAN BE RECONNECTED

— /
\

/

Plasma 2

Plasma 1

/ T
/ I

EJECTED FROM THE RECONNECTION SITE

\

— —
(-
SENG

/ T

EJECTED FROM THE RECONNECTION SITE

HIS DRIVES THE PULLING OF UPSTREAM FLUX AND PLASMA

S <

—)

-

WHICH IS RECONNECTED AND EJECTED
ETC. ETC. AND THE PROCESS IS SELF MAINTAINED

\y/

—)

-

MAGNETOHYDRODYNAMICS

- Hydrodynamics: only consider the evolution « macroscopic » quantities
- Density, momentum, pressure, energy...

- Magneto: fluid is conducting electrical current and respond to magnetic forces

dp .
L 4 V-(pv)=0 - Mass conservation
ov _
p|l ——+v-Vv|=-VP+JIxB Momentum balance

ot

OB - Resistive Induction Equation

— =V x(vxB)+nV°B

ot

Notes : - Resistivity is linked to electron/ion collisions, leading to thermalization and dissipation

- Only two spatial scales here: system scale and resistive dissipation scale

HPC Master Class

pp

MAGNETOHYDRODYNAMICS

% +V-(pv) =0 - Mass conservation
0 (2_;’ v VV) — _VP+JxB - Momentum balance
0B 5 - Resistive Induction Equation
— =V x (vxB)+nV°B
ot
‘Inducti on’ OB _ 2 , VL
Induction equation 9 Vx(vxB)+nV'B Magnetic Reynolds Number R=—

. Advection+

Dissipation

- Resistivity is linked to electron/ion collisions, leading to thermalization and dissipation
- Only two spatial scales here: system scale and resistive dissipation scale

HPC Master Class

pp

B _
e x (v x B)

OB
ot

0B
E—VX(VXB)

OB
ot

'''' . < Super large

Magnetic reconnection is much too slow in
this formalism: we forget some physics!

Describing the evolution of the plasma as a single
fluid does not hold at a certain scale...

‘A
S =

lons are much heavier than electrons and have a
much larger inertial length scale

dp
ot TV (pv) =0 SINGLE FLUID FROZEN IN THE MAGNETIC
v FIELD
p(E—FV'VV) =—-VP+JxB
0B
— =V x(vxB

ONLY ELECTRONS ARE ASSUMED TO BE
FROZEN IN B. [ON INERTIA ALLOW THEM
TO DETACH AT SMALL SCALES

Is it enough?

EZVX(VXB)
0B
W_VX(VGXB)
OB ,

— = B
ot v

Fluid: macroscopic quantities are defined locally

Not always true... actually almost always wrong!

>

~Particle mean free path

>

T

— 122588

\

I (LX+LW): 2024

[SPR-

°

The bulk flow is « just » the local average of the particle velocities
Particles do not follow the same path

The bulk flow is « just » the local average of the particle velocities
Particles do not follow the same path

HALL MAGNETOHYDRODYNAMICS

The bulk flow is « just » the local average of the particle velocities
Particles do not follow the same path

HPC Master Class

Vlasov equation: distribution functions of Coupled to Maxwell Eq.
graneenenananns D g ionS, e|ectrons 8E’

of i Ofi igq of i — =2 (VxB-j)

— +4iv - A E x B) - —i=0 - ot

5 §+§m(+v xB) oy fir fe o

v+dv

Vlasov equation: distribution functions of Coupled to Maxwell Eq.
jons, electrons OE

of of | 4 2i —- = (VxB -}
— : E B).— =0 :
at—l_v ar—l_m(—|_V><) av fzvfe 8812
— =—-VXxXE
ot
f(vit
>
Number of particles at position r that \

have a velocity between v and v+dv

Vlasov equation: distribution functions of Coupled to Maxwell Eq.
jons, electrons

OF
of of = q of | — = (VxB—j)
8t+v 8r+m(E+VXB) 3V_O Jis Je 88];

EI—VXE

« moments » of the distribution function

~ f(v)s
n(r,t):/_ f(r,v,t)dv

Vlasov equation: distribution functions of Coupled to Maxwell Eq.
jons, electrons

OF
of of = q of | — = (VxB—j)
8t+v 8r+m(E+VXB) 3V_O Jis Je 88];

EI—VXE

« moments » of the distribution function

~ f(v)s
n(r,t):/_ f(r,v,t)dv
1 oo

u(r,) = —/_Oovf(r,v,t)dv

n

Vlasov equation:

ar m ov

ot

« moments » of the distribution function
O
n(r,t):/ f(r,v,t)dv
— 00
1 ©.@)

u(r,) = —/_Oovf(r,v,t)dv

n

distribution functions of
jons, electrons

af—|-V'8f—|-q(E—I—VXB)~g:O fiafe

Coupled to Maxwell Eq.
oF

a=c2(V><B—j)
OB
a——VXE

Vlasov equation: distribution functions of Coupled to Maxwell Eq.
jons, electrons

OF
of of = q of | — = (VxB—j)
at—l_v 8r+m(E+VXB) 3V_O Jis Je 88];

EI—VXE

« moments » of the distribution function
O
n(r,t):/ f(r,v,t)dv
— 00
1 ©.@)

u(r,) = —/_Oovf(r,v,t)dv

n

Endless number of moments...

RECONNECTION AT THE MAGNETOPAUSE

Vlasov equation:

8f of 5’f
(975 .8r+m(E+VXB) ov

=0

« moments » of the distribution function

:/_O:Of(r,v,t)dv

Endless number of moments...

HPC Master Class

distribution functions of
jons, electrons

fiafe

Coupled to Maxwell Eq.
oF

EZCQ(VXB—j)
0B
E——VXE

Density depends on mass flux

dp
6‘t+v (pv) =0

p(%—erv Vv> = —-VP+J xB
\/‘

momentum depends on pressure...

Fluid equations: truncated infinite
system of moment equations.

O L =

5 c(VxB-=j)
0B
E -V x E

Evolve in time for all populations

Integrate in velocity space to get ion
and electron densities and charge
flux

Calculate the electric current

Evolve Maxwell equations

5 c(VxB-=j)
0B
g -V x E

f:f(r7v7t)

Ty ny UZUDE: nvy Tz Tl

\/v\/\/v\/

Spatial Velocity Temporal
domain domain domain

At ~ Q' ~ 0.1ms, T ~ lhour — n; ~ 4e7
Az ~ p. =~ lkm, L ~ 50Re — n, ~ 2e5
Av ~ 0.01V4 =~ bkm/s, V ~ 5V — n, ~ 5e2

In a thousand years maybe...

10 Km 500 Km 100000 Km 1 Million Km

Fully Kinetic Fiuld « MHD »

< fu11¥ kinetic wsn.c?, but small > <B\:lt no kinetic physics .
domains, short durations

—1 . 7 / S '
Wee w;l L,T
pe 5

1 Million Km

Fluid « MHD »

Global scale system

<Bui: no kinetic physics .

Fully Kinetic

fully kinetic physics, but small
< " n
domains, short durations

S S E—

-1
wce w—.l

ct
pe p‘

10 Km 500 Km 100000 Km 1 Million Km

Hybrid kinetic

include ion kinetics but a fluid electron model

0B
Faraday’s law T R D
Ampere’s law toj =V x B,
lon Vlasov eq. O _ _, vy E+vXB o
875 \% fp mp pr7

lon moments p

Quasi-neutrality n; = Ne =N,
v, =v; — >
ne
dve
Electron momentum eq. MeNe—— = —V - P, —en. (E+ve x B)

0B
Faraday’s law T —V x E,
Ampere’s law toj =V x B,
lon Vlasov eq. O _ _, vy E+vXB o
875 \% fp mp pr7

lon moments

Quasi-neutrality

B J
Ve —_— V - -
ne
1 Me dVe
i ? E _ — e X B - V ° Pe - .
Generalized Ohm’s law v on e di

Kinetic for ions, fluid for electrons.

This is what you will implement :-)

3 STEPS ITERATED CRANK NICHOLSON

And you will implement it this way ;-)

t Prediction

B! =B" — AtV x E”
Vngfl V- P,

Ej = —u" x By + —— N H VX BRT -y VAV BR
(E,B)""/? =< (E,B) >*! Yee grid
rZ;rl/Q "4+ At/2v"
E.B (n+1/2) Z (E Bz]k:) W (|rijkz ZfL1/2\)
ijk

n+1
m dv,; . (V" w LBTL/2 En-|-1/2>

dt
V= S (=) =D W (e i)

Prediction

B!" =B" — AtV x E"t1/2
VxByl v.P

i+1/2,5+1/2,k)

n+1 n+1 n+1 e n+1 2 +1
BT = -t B + i — g HV x BT —vVPV x B
r]’j;l/z r" + At/2v"

(E,B)""/? =< (E,B) >"+!

dvit
m; p2 — e (Vn % +Bn+1/2 +En+1/2>
dt
Nn+1 pr n-I-IW |r7,jk Zil-1|) pr n—|—1W ‘rljk Zil—lD
Correction

Bn+1 — B" — AtV x E’fH—l/Q

V xB*tl V.P,

N n+1 2 n+1
Nl N1 +nVxB vV<V x B

En—|—1 — _un+1 > Bn+1 4+

t+ At
HPC Master Class @O LPP

YOUR CODING ENVIRONMENT

Tower1234

Instance IP Address
c4-9 157.136.253.198
c4-8 157.136.252.166
c4-7 157.136.252.152
c4-6 157.136.250.149
c4-5 157.136.254.143
c4-4 157.136.254.44
c4-3 157.136.252.31
c4-11 157.136.251.132
c4-10 157.136.255.48
c4-2 157.136.255.161
c4-1 157.136.253.140

HPC Master Class

SOME ELEMENTS FOR HIGH PERFORMANCE

YLGENCI

—

Hewlett Packard
nterprise

e .
e ——
R —

- —

SUPERCOMPUTER ARCHITECTURE

Network connection

« Nodes » are linked via fast network connections
Each node has its own memory

Each node has several « cores » sharing the same memory

HPC Master Class éLPP

MODERN (HETEROGENEOUS) SUPERCOMPUTER ARCHITECTURE

Network connection

Node 1 Node 2 Node N

« Nodes » are linked via fast network connections
Each node has its own memory

Each node has several « cores » sharing the same memory

Each node may have one or several GPUs

HPC Master Class

Cores

GPUs

PP

GENCI : Grand Equipement National Calcul Intensif

- https://www.genci.fr/centre-informatique-national-de-lenseignement-superieur-cines

- https://www.genci.fr/institut-du-developpement-et-des-ressources-en-informatique-scientifique-idris

- https://www.genci.fr/tres-grand-centre-de-calcul-du-cea-tgcc

https://www.genci.fr/centre-informatique-national-de-lenseignement-superieur-cines
https://www.genci.fr/institut-du-developpement-et-des-ressources-en-informatique-scientifique-idris
https://www.genci.fr/tres-grand-centre-de-calcul-du-cea-tgcc

MULTICORE PROCESSOR MEMORY

Multicore Processor

Core O Core 1 Core 2 Core 3

1 ns L1 cache

10 ns L2 Cache

8 Cache
RAM Memory 10 us | sSend data over network
Main Memory (RAM)

Mass Storage
(Hard Disk, etc.)

- Loading data and instruction from memory is expensive
- Memory is decomposed into a « cache hierarchy »

L1
2

L3
RAM

In memory CPU
HPC Master Class @O LPP

MULTICORE PROCESSOR MEMORY

Cache is not a contiguous block of memory

It is made of a set of cache lines of a fixed size
Data is fetched for an entire cache line
Contiguous memory populate cache line

« Oldest » (usage) cache lines are replaced first

>
&

—
w
w
o
3]
3]
@
(-
o
E
o
=

S—

g

Cache

64 bytes

Cache line
Cache line
Cache line
Cache line
Cache line

=)

Both data and instructions are pre-fetched into the cache to minimize the probability of cache misses

HPC Master Class

MULTICORE PROCESSOR MEMORY

for (int i=; i < 4; ++i)
{
for (int j=0; j < 5; ++j)
{
field[il [j] = ...;

}
}

for {(int j=; j < 5; ++j)
{
for (int i=0; i < 4; ++1i)
{
field[il [j] = ...}
}

=0 i=1 i=2 i=3
O|5 (1015
116 |11]16
2 | 7 |12 (17
318 |13|18
4 19 (1419

- « Cache hit » : required data is in cache, low latency
- « Cache miss »: data not in cache... you wait

i=0 |=2

=1
//,,————-\\\\ //,,————-\\\~///,————-\\\\ /,,f’T“‘~\\\

_5 6|71|8]|9|[10[11]12|13|14|15|16|FB18|19

Next index probably in cache

Next index probably not in cache...

- Be careful of how you traverse your datal
- Worst is probably random accesses....
- Beware spatial and temporal coherence

Memory bound programs: run time dominated by memory accesses. Huge arrays and little operations per element
CPU bound programs: huge numbers of heavy computations for little number of elements

HPC Master Class @O LPP

Two instructions without pipelining] Two instructions with pipelining .
I]

Fetch Fetch
Decode Decode
Execute Execute
Write Write
112|3|4|5]|6|7]|8 718
Handling an instruction requires several steps that the CPU manages in a « pipeline »
Fetch Fetch
Decode Decode
Execute Execute
Write Write
112|13(1/4|5|6|7 |8 1121314561718

/

if(condition)

-

}

« branching » potentially kills the flow in the pipeline and wastes cycles.

Fetch Fetch
Decode Decode
Execute Execute
Write Write
31/4|5]6|71]8 112(3|4|5|6|7]8

/

if(condition)

—

}

« branching » potentially kills the flow in the pipeline and wastes cycles.

Avoid conditions and virtual functions in « heavy » loops

- Out-of-order pipelines: CPUs are « smart » enough to handle independent instructions to fill the pipeline
- Superscalar CPUs: instructions are dispatched to several execution units working in parallel
- Branch prediction: the CPU tries its best to identify patterns and predict the next instructions

Compilers are very smart. Gece is ~15 million lines of codes...

GENERAL OPTIMIZATION STRATEGY

Premature optimization is the root of all evil... but don’t be dumb!

- Make it work
- Make it clean
- Make it fast

https://coliru.stacked-crooked.com/a/357dc3307{794823

C++
template<typename Fn>

auto measure(Fn fn)

{

std::vector<double> durations;
int const repeatTimes = 100;

Measure measure measure..... auto ret = 0;

for (int step = 0; step < repeatTimes; ++step)

Very hard to predict what’s taking time... ¢

std::chrono: :high_resolution_clock::time_point t1;
tl = std::chrono::high_resolution_clock::now();

- Implement your own timer et = 10

- Use tools
- perf: https://perfwiki.github.io/main/
- gprof: https:/hpc-wiki.info/hpc/Gprof Tutorial T e i 10
- vtune (intel)

std::chrono: :high_resolution_clock::time_point t2;
t2 = std::chrono::high_resolution_clock: :now();

}
= etC. std::cout << "use the value : " << ret << "\n";
return std::accumulate(std::begin(durations), std::end(durations),
).0)/repeatTimes;
>

1.Choose the « best » algorithm
2.Make it faster
3.Parallelization

HPC Master Class @O LPP

https://perfwiki.github.io/main/
https://hpc-wiki.info/hpc/Gprof_Tutorial
https://coliru.stacked-crooked.com/a/357dc3307f794823

HPC Master Class

CODE IS FOR HUMANS

All of your projects will always have at least 2 developers

You, and you 6 months later... help yourself!

&0O0D CODE 8AD CODE

THE ONLY VALID MEASUREMENT OF CODE QUALITY: WTFS/MINUTE

HPC Master Class

PP

RENTICE
HALL
Robert C. Martin Series -_

A Handbook of Agile Software Craftsmanship

O’REILLY

- Naming things is hard, it takes time, it’s normal, rush now: lose time later

- Choose descriptive and unambiguous names

Follow standard conventions

- Use pronounceable names (read your code like English)
Use searchable names

Replace magic numbers with named constants

Don't append prefixes or type information

NAMING THINGS CORRECTLY

- Naming things is hard, it takes time, it’s normal, rush now: lose time later
- Functions should have no arguments, or one at most. Two is one too many probably. 3 is code smell

Say you want a piece of code that adjusts the
time step if the CFL condition is violated

if (0.9%v/(dx/dt) < 1)

{ - What the f*** does it mean?

¥

if (!stability_criterion(v, dt, dx)) * Better but does not read well...

{ * « not stability criterion »? What does it mean?

« dx : limited to 1D?
« Should we know at this level that we need v, dt and dx?

}

if (!isStable(v, dt, dx))
; Reads better

e Same comments as above for the rest
}

if (!simulation.isStable(solution_state))
{ * Best?
}

HPC Master Class éLPP

You start your car to go somewhere:

- Open the door
- Door unlocking mechanism...
- Sit down - Open the door
- Push start (turn key?) - Sit down
- Release brakes - Push start (turn key?)
- brakes move away from disks... - Release break
- Push gas pedal - Push gas pedal and drive

- Gas flow into engine
- Gas mixes with air in combustion chamber

- Drive

Only write in the current function what is relevant to the current context

You have a grid and want, somewhere, to get the coordinates of each nodes
What do you do?

Typically, you write this function:

auto get_coordinates_from_grid(std::vector<double> const& grid, int i, int j)

i
}

Ll

What’s wrong with it?

RESPECT THE LEVEL OF ABSTRACTION

You have a grid and want, somewhere, to get the coordinates of each nodes

auto get_coordinates_from_grid(std::vector<double> const& grid, int i, int j)

i
}

Call site:

fok (Ent iv= 0F i < grid size: ki)

{
for (int j = 0; j < grid_size; ++j)
{

auto coords = get_coordinates_from_grid(my_grid, i, j);

}

- The function leaks that the grid is a vector of double, and it is 2d
- Call site needs to handle the 2Dness, the grid size, and (i,))
- «grid » is needlessly repeated

- « get » is useless, we see we get something from coords =

Do NOT write low level first. Start high level and go down.

HPC Master Class

Call site:

std::size_t nx = 10, ny = 20;;
Grid my_grid{nx, ny};;

bl : - ‘coords_at’: enough, ‘idx’ complements
for (auto const& idx: my_grid)) ,
{ - Who cares how Grid works internally here?
auto coords = my_grid.coords_at(idx); - Easily iterate over a grid with range-based loop
}

Writing the high level first:

- fixes the interface of objects

- helps respecting the right level of abstraction

- Simpler code that reads more easily, less bugs, better extensibility, etc.
- More difficult to get overwhelmed by details...

t 4+ At

B =B" - AtV x E”
Vngfl VP,

En—l—l e Bn+1
u” x + N N

S +nV x Bl —vVPV x BRT!
(E,B)""? =< (E,B) >t

p 2 =g g At/2v"

pl
E.B < n+1/2> _ Z (E, Bijk) 74 <|rijk _ le+1/2|)
ijk
+1
m dvdgt1 . (v” w +BHY/2 | En+1/2>
N prvn+1W i —) u"t = prvgflw (Irije — o)
p
Prediction

B/t =B" — AtV x E"t1/2

n+1 __ n+1 n+1 n+1 2 n+1
E =-u"""xB,y + Nn+1 ~ N +77V><B —vV7V X Bpg
rzzﬂ/z "+ At/2v"

(B.B)""* =< (E.B) >}"!

dvn+1
m; —22 :e(vn % +Bn+1/2+En+1/2>
dt
Nl — prv”‘HW ik — ZiHD prvn+1W (Irije — ;Lfr1|)
Correction

Bn+1 — B" — AtV % En+1/2

VxBrtl v.P

n+l . _.n+l n+1 .
E =—u x B + Nl N

41V x BT — V2V x B* T

t Prediction

Start writing this

while(time < final_time)
{
predictor(state);
predictor(state);
corrector(state);
diagnostics.dump(time);
time += dt;

Then this

void predictor(State& state)

{

faraday(state.B, state.E, Bpred);
ampere(Bpred, state.J);

ohm(Bpred, state.J, state.N, state.V, Epred);
average(state.E, Epred, Eavg);
average(state.B, Bpred, Bavg);

Only then this

void faraday(Vector const& B, Vector const& E, Vector& Bnew)
{

// Faraday's law: dB/dt = - curl(E)

Bnew = B — dt * curl(E);

C++

}

1. Small (1-20 lines max)

2. Do one thing (what its name says)

3. Use descriptive names (changes something? Getter? Runs something?...)
4. Prefer fewer arguments (0 best, 1 ok, 2 suspicious, 3 smells...)

5. Have no side effects

What are the problem with comments?

They’re annoying to write

No one really reads them
They can unsync with code and be misleading when we do read them... so we don’t read them...

They very often hide bad code that should be changed...

e\

Comments are often procrastination to fix code

. A block of code with a comment : is a FUNCTION
. Write expressive code, not comments
Don't be redundant : « loops over elements... »

—_—

W N

When to write comments?

Use as explanation of intent : why done this way? What assumptions?
2. Talks to colleagues or later you.

—h

Bad comments

// loop over particles

for (auto const& particle : particles)
{

}

// return the size of the particle array
int particleArraySize() const

{

| return array_.size();

}

Useful comments

template<typename ResourcesView>
NO_DISCARD auto restart_patch_data_ids(ResourcesView const& view) const

!
// true for now with https://github.com/PHAREHUB/PHARE/issues/664

constexpr bool ALL_IDS = true;

stdr=Vectoh<=dnt= ids:

static void postprocessBy2d(auto& bx, auto& by, Euto const& layout,

{

core::Point<int, dimension> idx)

auto locIdx = layout.AMRToLocal(idx);

auto ix =il ocld idalpx

auto iy = locldx[dirYl;

L/ |

// here with offset = @ -=> — —— <- or here with offset = 1
1/ |

af (idxcdapyl % 20 '="0)

{

(Idddaid % 2 == 0} 20 =]«
1;

HiNiEXOifEs eils
int yofifiset

by (> ay) = b (hyi G iyl = e hyiing iy i))

+ 0.25

* (bx(p_minus(ix, xoffset), d_minus(iy, yoffset))
- bx(p_plus(ix, xoffset), d_minus(iy, yoffset))
- bx(p_minus(ix, xoffset), d_plus(iy, yoffset))

+ bx(p_plus(ix, xoffset), d_plus(iy, yoffset)H);

WRITING MAKEFILES IS DIFFICULT

Binary code
Source Code (executable, library)

’ ’ Makefile make E -

Makefile:

- compiler command for each compilation unit (sources, headers)
- Link command for assemble compiled units into targets (libraries, executables)

Writing makefiles can become very complicated:

- When creating multiple targets

- Each target has different dependencies

- Finding dependencies and dealing with their versions
- Build portability across different platforms

HPC Master Class

PP

CMAKE WRITES THE MAKEFILE FOR YOU

Binary code
(executable, library)

make #

Makefile
’ </>

Executable

Source Code

cmake

CMakelLists.txt

CMakelLists.txt: high level description of each target and their dependencies
Make reads CMakelLists.txt files and generate the Makefile

HPC Master Class

L CMake

- Made by ‘kitware’, open source

Available at https://cmake.org/

- Packaged on Linux/Mac (e.g. homebrew)
Tutorial: https://cmake.org/cmake/help/latest/quide/tutorial/index.html

People love to hate CMake, but it is widely used...

MESON: a good alternative
https://mesonbuild.com

HPC Master Class

\ 4

pp

https://cmake.org/
https://cmake.org/cmake/help/latest/guide/tutorial/index.html
https://mesonbuild.com

INTERPRETED VS COMPILED LANGUAGE

e DOV UM e e « Compile time » (OUIA tIMe) ...y v AL
vode Compiler > Bina - Machine runs
(For humans) i ry

(CPU instructions etc.)

............. CDBVHIME 7 o esesesssssssssseseseseeeeeseesseesseeeeeenemmmneeee S UL T 2 e eeeeeeeeeeeeeeeeeeeeesemeneeee
Code .1 Interprets ——_
(FOF humanS) < Interpreter Machine runs

Interpreting code is slower than directly running binary CPU instructions
Compiled code is more optimized
Interpreted languages are more flexible

HPC Master Class @O LPP

HiIGH PERFORMANCE COMPUTING

HPC?

- The goal of HPC is to execute a program « as fast as possible »
- HPC codes are thus written mostly with compiled languages

- « modern » codes mix compiled languages for (heavy) computational components and
interpreted code for higher level or user interface components.

Main HPC compiled languages

- FORTRAN (FORmula TRANSslation): 1957 and many versions since, latest is Fortran 2023
- « easy » to write code that « looks like the math »

- C:invented in 1972 - general low level (fast) programming language
- C++: invented in 1985 - low level of C with easier high level abstraction

Main HPC interpreted languages

- Python: invented in 1991, really took off for science in mid 2000s (Numpy 2006, etc.)
- Huge ecosystem, easy to write

HPC Master Class

< 2000-2010 > 2000-2010

Soft. Engineering

VS

numerical

Peta (1e15) /Exascale (1e18) scalability

- Complex data structures

- Complex architectures (multi-GPU / CPUs etc.)
Versatility, user communities

- Code is mostly solving equations
- Simple supercomputer architectures

- 1 dey, 1 user, usually same person (no
versatility, no ergonomic interface, etc.)

WHY C++?

We (the HPC community) are outnumbered by industry people

- We run on computers made for games (or now Al)
- Programming languages (and interpreters/compilers) are driven by industry needs
- Third party libraries are mostly developed and maintained for industry needs

- Need to hire people with engineering and hardware/low-level skills: those people typically are in the industry

What does the industry?

Jul 2025 Jul 2024 Programming Language

1 ' Python

2 C C++
3 @ C

C#

JavaScript

Go

Visual Basic

Ada

Delphi/Object Pascal

Perl

Fortran

HPC Master Class

(TIOBE index)

Your bible: https://cppreference.com/

Online compilers (for quick tests): https://coliru.stacked-crooked.com/ (quick & dirty cpp tests)

https://godbolt.org/ (See assembly etc.)

Some references:

https://nicolasaunai.github.io/teaching/M2IRT-HPC-Master-class

C++

. Function name
Headers: definitions of

classes, functions, etc.
that are used after argument

#include <iostream>
#include <string>

int my_function(std: :string word)

- {
return word.size();
}
Mandatory main int main0
function (point of entry) - {

std::string hello = "hello world";

std::cout << hello <<" is "<< my_function(hello) << "

Basics: https://coliru.stacked-crooked.com/a/d4a3e9d19986f3e7

HPC Master Class

letters long\n"f

https://coliru.stacked-crooked.com/a/d4a3e9d19986f3e7

C++ IN A NUTSHELL

- Data types
- Pointers & references: https://coliru.stacked-crooked.com/a/4c8c292d1297b138
- Basics https://coliru.stacked-crooked.com/a/c99925c0e0f312dc:

- Main function,
- Functions, return type, arguments, default arguments, lambda functions

- Structures & classes: https://coliru.stacked-crooked.com/a/8d89c5d1aedc2f57

public, private,

Constructors, destructors, methods, operators

Private inheritance: sharing code

Public inheritance, polymorphism, Liskov principle, design patterns

- Containers (array, vector...): https://coliru.stacked-crooked.com/a/99792e2d07efd28b
- Smart pointers & Ownership

- STL (transform, random, math, etc.)

- Templates, variadic templates

- EXxceptions

- Const, constexpr

- namespace

HPC Master Class

pp

https://coliru.stacked-crooked.com/a/4c8c292d1297b138
https://coliru.stacked-crooked.com/a/c99925c0e0f312dc
https://coliru.stacked-crooked.com/a/8d89c5d1ae4c2f57
https://coliru.stacked-crooked.com/a/99792e2d07efd28b

const by default, and remove it if required : help the compiler

constexpr, don’t make at runtime if you can make it at build time
Avoid virtual calls or if at low level
Keep memory allocation out of your heavy loops

Beware copies... start by deleting copy constructors...

HANDS ON!

iy

HPC Master Class @O LPP

git clone https://github.com/nicolasaunai/mini cmake project

Write the CMakelLists.txt file to generate an executable for this cpp code

https://github.com/nicolasaunai/mini_cmake_project

git clone https://github.com/nicolasaunai/h5example

Modify the CMakelLists.txt to get the HighFive dependency

https://github.com/nicolasaunai/h5example

« Demonstrate these finite difference formulae for the first order derivative are
respectively first and second order accurate

fivr—fi L
A = (@)
Jiv1 — Jici
2Ax = (@)

« Write a CMake C++ program that demonstrates it

Ax

